...
首页> 外文期刊>Heat transfer >Thermal diffusion and diffusion thermo effects of Eyring-Powell nanofluid flow with gyrotactic microorganisms through the boundary layer
【24h】

Thermal diffusion and diffusion thermo effects of Eyring-Powell nanofluid flow with gyrotactic microorganisms through the boundary layer

机译:Eyring-Powell纳米流体与回旋微生物通过边界层的热扩散和扩散热效应

获取原文
获取原文并翻译 | 示例
           

摘要

In this article, the effects of thermal diffusion and diffusion thermo on the motion of a non-Newtonian Eyring Powell nanofluid with gyrotactic microorganisms in the boundary layer are investigated. The system is stressed with a uniform external magnetic field. The problem is modulated mathematically by a system of a nonlinear partial differential equation, which governs the equations of motion, temperature, the concentration of solute, nanoparticles, and microorganisms. This system is converted to nonlinear ordinary differential equations by using suitable similarity transformations with the appropriate boundary conditions. These equations are solved numerically by using the Rung-Kutta-Merson method with a shooting technique. The velocity, temperature, concentration of solute, nanoparticles, and microorganisms are obtained as functions of the physical parameters of the problem. The effects of these parameters on these solutions are discussed numerically and illustrated graphically through figures. It is found that the velocity decreases with the increase in the non-Newtonian parameter and the magnetic field, whereas, the velocity increases with a rise in thermophoresis and Brownian motion. Also, the temperature increases with an increase in the non-Newtonian parameter, magnetic field, thermophoresis, and Brownian motion. These parameters play an important role and help in understanding the mechanics of complicated physiological flows.
机译:在本文中,研究了热扩散和扩散热对非Newtonian Eyring Powell纳米流体在边界层中具有回旋微生物的运动的影响。该系统受到均匀的外部磁场的应力。这个问题是通过非线性偏微分方程组的数学方法来调节的,该方程组控制运动,温度,溶质,纳米颗粒和微生物的方程。通过在适当的边界条件下进行适当的相似变换,可以将该系统转换为非线性常微分方程。通过使用Rung-Kutta-Merson方法和射击技术,可以对这些方程进行数值求解。速度,温度,溶质,纳米颗粒和微生物的浓度是问题物理参数的函数。这些参数对这些解决方案的影响将通过数字方式进行讨论,并通过图形以图形方式说明。发现速度随着非牛顿参数和磁场的增加而减小,而速度随着热泳和布朗运动的增加而增加。同样,温度随着非牛顿参数,磁场,热泳和布朗运动的增加而增加。这些参数起着重要作用,有助于理解复杂的生理流机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号