首页> 外文期刊>Heat transfer >Shock wave boundary layer interactions in hypersonic flows over a double wedge geometry by using conjugate heat transfer
【24h】

Shock wave boundary layer interactions in hypersonic flows over a double wedge geometry by using conjugate heat transfer

机译:通过使用共轭热传递,在双楔几何上过度流动的冲击波边界层相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Shock wave boundary layer interaction phenomena play a critical role in the design of supersonic and hypersonic vehicles. Consequently, this paper mainly focuses on hypersonic flow over a double wedge model, flow fields around concave corners are relatively complicated, and produce several classical viscous flow features depending on the combination of the first and second wedge, and the important characteristic phenomena are mainly the shock-boundary layer and shock-shock interaction. For these interactions, aerodynamic heating and pressure loads increase greatly when interactions are present. The conjugate heat transfer (CHT) technique is expected to exactly predict the separation bubble length, heat flux, skin friction coefficient, and pressure distributions in double wedge studies in hypersonic applications. In the present CHT studies, the different wall materials used are thermal insulation, Macor, and SiC, it is clearly shown that while using Macor and thermal insulctation wall material in CHT studies, the interface temperature, skin friction coefficient, heat flux distribution along the length change significantly with increase in simulation time. In comparing the CHT results with the fluid flow solver with the wall, considering isothermal and adiabatic boundary results, it is clearly indicated that the fluid flow solver results are either underpredicting or overpredicting the interface properties, but CHT studies give an accurate prediction of the separation length and interface properties.
机译:冲击波边界层相互作用现象在超音速和超音速车辆设计中发挥着关键作用。因此,本文主要集中在双楔形模上的过度流动,凹形拐角周围的流场相对复杂,并根据第一和第二楔的组合产生几种经典粘性流动特征,重要的特征现象主要是冲击边界层和冲击震动相互作用。对于这些相互作用,当存在相互作用时,空气动力学加热和压力载荷大大增加。预期共轭传热(CHT)技术预计在高超声速应用中的双楔形研究中的分离气泡长度,热通量,皮屑系数和压力分布。在目前的CHT研究中,使用的不同壁材料是绝热,麦克风和SiC,清楚地表明,在CHT研究中使用麦克波和绝热壁材料,界面温度,皮肤摩擦系数,热量通量分布沿着随着模拟时间的增加,长度显着变化。在将CHT结果与壁上的流体流动求解器比较时,考虑到等温和绝热边界结果,清楚地表明流体流动求解器结果是欠立或过度估计界面特性,但CHT研究提供了对分离的准确预测长度和接口属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号