首页> 外文期刊>Heat transfer >Computation of radiative Marangoni (thermocapillary) magnetohydrodynamic convection in a Cu-water based nanofluid flow from a disk in porous media: Smart coating simulation
【24h】

Computation of radiative Marangoni (thermocapillary) magnetohydrodynamic convection in a Cu-water based nanofluid flow from a disk in porous media: Smart coating simulation

机译:多孔介质中圆盘中Cu水下纳米流体流动辐射Marangoni(热毛细管)磁性流体动力学对流的计算:智能涂层模拟

获取原文
获取原文并翻译 | 示例
           

摘要

With emerging applications for smart and intelligent coating systems in energy, there has been increasing activity in researching magnetic nanomaterial coating flows. Surface tension features significantly in such regimes, and in the presence of heat transfer, Marangoni (thermocapillary) convection arises. Motivated by elaborating deeper the intrinsic transport phenomena in such systems, in this paper, a mathematical model is developed for steady radiative heat transfer and Marangoni magnetohydrodynamic flow of a Cu-water nanofluid influencing a strong magnetic field through a porous disk. The semianalytical adomain decomposition method is employed to find the solution of flow governing equations, which are reduced into ordinary differential equation form via the Von Karman similarity transformation. Validation with a generalized differential quadrature algorithm is included. The response in dimensionless velocity, temperature, wall heat transfer rate and shear stress is investigated for various values of the control parameters. Temperature is reduced with increasing Marangoni parameter, whereas the flow is accelerated. With increasing permeability parameter, the temperatures are elevated. Increasing radiative flux boosts temperatures further from the disk surface. Increasing magnetic parameter strongly dampens the boundary layer flow and elevates the temperatures, also eliminating temperature oscillations at lower magnetic field strengths.
机译:通过在能量中进行智能和智能涂层系统的新兴应用,在研究磁性纳米材料涂层流动方面存在越来越多的活性。表面张力在此类方案中显着具有显着的特征,并且在热传递存在下,出现了Marangoni(热毛细管)对流。通过在这种系统中制定更深的内在传输现象的激励,本文开发了一种数学模型,用于通过多孔盘影响强磁场的Cu水纳米流体的稳定辐射传热和Marangoni磁性动力学流动。采用半角质adomain分解方法来找到流动控制方程的溶液,其通过von Karman的相似性转化减少成常微分方程形式。包括具有广义差分正交算法的验证。对控制参数的各种值研究了无量纲速度,温度,壁传热率和剪切应力的响应。随着Margoni参数的增加,温度降低,而流动加速。随着渗透性参数的增加,温度升高。增加辐射磁通量从盘表面进一步提升温度。增加磁性参数强烈地抑制边界层流动并提升温度,也消除了较低磁场强度的温度振荡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号