首页> 外文期刊>Heat transfer >Numerical investigation of natural convection of a non-Newtonian nanofluid in an F-shaped porous cavity
【24h】

Numerical investigation of natural convection of a non-Newtonian nanofluid in an F-shaped porous cavity

机译:F形多孔腔中非牛顿纳米流体自然对流的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

This study numerically investigates the free con-vective heat transfer of a non-Newtonian nanofluid through an F-shaped porous cavity. The thermal conditions of the walls of the cavity are assigned as T_C and T_H for the cold right wall and the hot left wall, respectively, and the remaining walls of the cavity are assigned as insulated walls. The model for this investigation is designed, implemented, and analyzed by COMSOL Multiphysics. The Galerkin finite element method is used to model and solve the governing equations of the flow and heat transfer process inside the porous media. Physical parameters are presented in the following order: 6 × 10~(-2) ≥ Φ ≥ 0.0, 0.4 ≥ AR ≥ 0.1,10~(-1) ≥Da≥ 10~(-3),1.4 ≥n ≥ 0.6, and 10 ≥ Ra ≥ 10~6. The goal of this study is to study the influence of geometry configuration (F shape) and the above parameters on the flow structure, isotherms, and heat transfer. These parameters have been taken into account to investigate their effects on this kind of heat transfer mechanism. Results show that the addition of nanoparticles plays a significant role in changing heat transfer rates. In addition, an increase in the aspect ratio (AR) leads to create narrow areas, which promotes the stagnation zones, thus decreasing the distance between cold and hot walls. This, in turn, enhances the flow uniformity. Moreover, it has been generally concluded that the Nusselt number and velocity rates are directly proportional to the AR, Darcy number (Da), and Rayleigh number (Ra), and negatively proportional to the power-law index (n); however, there are some exceptions and unusual behaviors noticed and explained through the paper.
机译:该研究用F形多孔腔数进行数值研究非牛顿纳米流体的自由载热传热。腔壁的热条件分别分配为冷右壁的T_C和T_H,以及捕左壁的T_H,并且腔的剩余壁被分配为绝缘壁。该研究的模型由COMSOL Multiphysics设计,实施和分析和分析。 Galerkin有限元方法用于模拟和解多孔介质内流动和传热过程的控制方程。物理参数按以下顺序呈现:6×10〜(-2)≥≥0.0,0.4≥10℃≥0.1,10〜(-1)≥da≥10〜(-3),1.4≥n≥0.6, 10≥RA≥10〜6。本研究的目标是研究几何构造(F形)和上述参数对流动结构,等温线和传热的影响。已经考虑了这些参数,以研究它们对这种传热机制的影响。结果表明,添加纳米颗粒在改变传热速率方面发挥着重要作用。另外,纵横比(AR)的增加导致产生狭窄的区域,促进停滞区域,从而降低冷热壁之间的距离。反过来,这提高了流量均匀性。此外,已经始终得出结论,新的营养数和速度率与AR,达西数(DA)和瑞利数(RA)成正比,并且与电力法指数(N)负面成比例;但是,有一些例外和不寻常的行为通过纸张解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号