首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Retrieval of Savanna Vegetation Canopy Height from ICESat-GLAS Spaceborne LiDAR With Terrain Correction
【24h】

Retrieval of Savanna Vegetation Canopy Height from ICESat-GLAS Spaceborne LiDAR With Terrain Correction

机译:利用地形校正从ICESat-GLAS星载激光雷达检索大草原植被冠层高度

获取原文
获取原文并翻译 | 示例
           

摘要

Light detection and ranging (LiDAR) remote sensing enables accurate estimation and monitoring of vegetation structural properties. Airborne and spaceborne LiDAR is known to provide reliable information on terrain elevation and forest canopy height over closed forests. However, it has rarely been used to characterize savannas, which have a complex structure of trees coexisting with grasses. This letter presents the first validation of spaceborne Ice Cloud and land Elevation Satellite Geoscience Laser Altimeter System (GLAS) full-waveform data to retrieve savanna vegetation canopy height that uses field data specifically collected within the GLAS footprints. Two methods were explored in the Kruger National Park, South Africa: one based on the Level 2 Global Land Surface Altimetry Data product and the other using Level 1A Global Altimetry Data (GLA01) with terrain correction. Both methods use Gaussian decomposition of the full waveform. Airborne LiDAR (AL) was also used to quantify terrain variability (slope) and canopy height within the GLAS footprints. The canopy height retrievals were validated with field observations in 23 GLAS footprints and show that the direct method works well over flat areas (Pearson correlation coefficient ${r} = 0.70$, $p< 0.01$, and ${n} = 8$ for GLA01) and moderate slopes (${r} = 0.68$, $p< 0.05$, and ${n} = 9$ for GLA01). Over steep slopes in the footprint, however, the retrievals showed no significant correlation and required a statistical correction method to remove the effect of terrain variability on the waveform extent. This method im- roved the estimation accuracy of maximum vegetation height with correlations (${R}^{2} = 0.93$, $p< 0.05$, and ${n} = 6$ using the terrain index ( $g$) generated from AL data and ${R}^{2} = 0.91$ , $p < 0.05$, and ${n} = 6$ using the GLAS returned waveform width parameter). The results suggest that GLAS can provide savanna canopy height estimations in complex tree/grass plant communities.
机译:光检测和测距(LiDAR)遥感技术可以准确估算和监测植被的结构特性。机载和机载LiDAR已知可提供有关封闭森林上的地形高度和森林冠层高度的可靠信息。然而,它很少用于表征稀树草原,稀树草原具有树木和草类并存的复杂结构。这封信介绍了星空冰云和陆地高程卫星地球科学激光测高仪系统(GLAS)全波形数据的首次验证,该数据使用大面积的GLAS足迹内专门收集的野外数据来检索稀树草原植被冠层高度。在南非的克鲁格国家公园,探索了两种方法:一种基于2级全球陆地测高数据产品,另一种使用1A级全球测高数据(GLA01)进行地形校正。两种方法都使用整个波形的高斯分解。机载LiDAR(AL)还用于量化GLAS足迹内的地形变化性(坡度)和冠层高度。通过在23个GLAS足迹中进行的实地观测验证了冠层高度,并证明了直接方法在平坦区域上的效果很好(Pearson相关系数 $ {r} = 0.70 $ $ p <0.01 $ < tex Notation =“ TeX”> $ {n} = 8 $ (对于GLA01)和中等斜率( $ {r} = 0.68 $ $ p <0.05 $ $ {n} = 9 $ (对于GLA01)。但是,在覆盖区的陡坡上,这些检索结果没有显示出显着的相关性,因此需要一种统计校正方法来消除地形变化对波形范围的影响。这种方法通过相关性提高了最大植被高度的估计精度( $ {R} ^ {2} = 0.93 $ $ p <0.05 $ $ { n} = 6 $ 使用根据AL数据生成的地形索引( $ g $ )和 $ {R} ^ {2} = 0.91 $ $ p <0.05 $ ,和 $ {n} = 6 $ 使用GLAS返回的波形宽度参数)。结果表明,GLAS可以在复杂的树/草植物群落中提供稀树草原冠层高度估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号