...
首页> 外文期刊>Nanotechnology, IEEE Transactions on >A Proton Hopping-Guided 3-D Space Charge Model for Quantitative Understanding of Humidity-Dependent Gas Sensing by TiO2 Nanoflower-Based Devices
【24h】

A Proton Hopping-Guided 3-D Space Charge Model for Quantitative Understanding of Humidity-Dependent Gas Sensing by TiO2 Nanoflower-Based Devices

机译:质子跳跃指导的3D空间电荷模型,用于定量了解基于TiO2纳米花的装置与湿度有关的气体传感

获取原文
获取原文并翻译 | 示例
           

摘要

Low temperature (90 °C) gas sensing performance, with ethanol as a test case, of TiO2 nanoflowers in the presence of humidity, was investigated. It was revealed that the sensor resistance in air and in ethanol was reduced in the presence of humidity. However, such variations in sensor resistance in the humid and in the nonhumid environment are more pronounced for baseline case (in air) than that in target species exposure (in ethanol). Interaction probability of the target species, in the presence of humidity, with the TiO2 nanoflower surface was governed by the proton hopping model. For quantitative understanding of the subsequent electron generation and transport phenomenon, a space charge model, corelating the influence of mutually competing and interdependent factors like oxygen vacancies, adsorbed O– species, dissociation of water and ethanol molecules on TiO2 nanoflower surface, has been demonstrated. It was found that decrease in base line resistance (Δ R) gradually becomes saturated with increase in relative humidity level, possibly owing to proton hopping in the physisorbed water layers which hinders the chemisorption of water molecules at the nanoflower surfaces leading toward relatively insignificant change in space charge region.
机译:以乙醇为测试案例,研究了在湿气存在下TiO2纳米花的低温(90°C)气敏性能。结果表明,在潮湿条件下,空气和乙醇中的传感器电阻会降低。但是,在基线情况下(在空气中)在潮湿和非潮湿环境中,传感器电阻的这种变化比在目标物质暴露下(在乙醇中)的传感器电阻更明显。质子跳跃模型控制目标物种在湿度存在下与TiO2纳米花表面的相互作用概率。为了定量了解随后的电子生成和传输现象,已证明了空间电荷模型,该模型将相互竞争和相互依存的因素(如氧空位,吸附的O–物种,水和乙醇分子在TiO2纳米花表面上的离解)的影响作为核心。已经发现,随着相对湿度的增加,基线电阻(ΔR)的降低逐渐饱和,这可能是由于物理吸附的水层中的质子跳跃,这阻碍了纳米花表面水分子的化学吸附,从而导致了相对微不足道的变化。空间电荷区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号