【24h】

A microscopic view on acoustomigration

机译:声迁移的微观观点

获取原文
获取原文并翻译 | 示例
           

摘要

Stress-induced material transport in surface acoustic wave devices, so-called acoustomigration, is a prominent failure mechanism, especially in high-power applications. We used scanning probe microscopy techniques to study acoustomigration of metal structures in-situ, i.e., during the high-power loading of the device. Scanning acoustic force microscopy (SAFM) allows for the simultaneous measurement of the acoustic wavefield and the topography with submicron lateral resolution. High-resolution microscopy is essential as acoustomigration is a phenomenon that not only results in the formation of more macroscopic voids and hillocks but also affects the microscopic grain structure of the film. We present acoustic wavefield and topographic image sequences giving a clear insight into the nature of the film damage on a submicron scale. The 900 MHz test structures were fabricated on 36/spl deg/ YX-lithium tantalate (YX-LiTaO/sub 3/) and incorporated 420-nm thick aluminium (Al) electrodes. By correlating the acoustic wavefield mapping and the local changes in topography, we confirmed model calculations that predict the correspondence of damage and stress (i.e., hillocks and voids) are preferentially formed in areas of high stress. The way the film is damaged does not significantly depend on the applied power (for typical power levels used in this study). Furthermore, acoustomigration leads to smoother surfaces via lateral grain growth. Another contribution to the grain dynamics comes from the apparent grain rotation in the highly anisotropic stress field of an acoustic wave. Thus, through in-situ scanning probe microscopy techniques, one can observe the initial changes of the grain structure in order to obtain a more detailed picture of the phenomenon of acoustomigration.
机译:声表面波设备中应力诱发的材料传输,即所谓的声迁移,是一种突出的失效机制,尤其是在大功率应用中。我们使用扫描探针显微镜技术研究了金属结构的原位声迁移,即在设备的高功率加载过程中。扫描声力显微镜(SAFM)允许以亚微米横向分辨率同时测量声波场和形貌。高分辨率显微镜必不可少,因为声迁移是一种现象,不仅会导致形成更多的宏观空隙和小丘,还会影响薄膜的微观晶粒结构。我们介绍了声波场和地形图像序列,使您可以清楚地了解亚微米级薄膜损坏的性质。在36 / spl度/ YX钽酸锂(YX-LiTaO / sub 3 /)上制造900 MHz测试结构,并结合420 nm厚的铝(Al)电极。通过关联声波场图和地形的局部变化,我们确认了预测损坏和应力(即小丘和空洞)对应关系的模型计算优先在高应力区域中形成。膜的损坏方式与施加的功率无关(对于本研究中使用的典型功率水平)。此外,声迁移通过横向晶粒生长导致表面更光滑。晶粒动力学的另一个贡献来自声波在高度各向异性应力场中的明显晶粒旋转。因此,通过原位扫描探针显微镜技术,人们可以观察晶粒结构的初始变化,从而获得关于声迁移现象的更详细的描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号