...
首页> 外文期刊>International Communications in Heat and Mass Transfer >The study of nucleation site interactions on the mixed wettability rough surface
【24h】

The study of nucleation site interactions on the mixed wettability rough surface

机译:混合润湿性粗糙表面的成核位点相互作用研究

获取原文
获取原文并翻译 | 示例
           

摘要

In order to achieve the best heat transfer performance on a mixed wettability surface, engineering of the wettability pattern is often used as heat transfer performance is significantly dependent on pitch distance between hydrophobic spots, which is maybe linked to the nucleation site interaction effects. In this work, the effects of nucleation site interactions between two hydrophobic cavities on a hydrophilic surface (a mixed wettability rough surface) are investigated, using a two-dimensional pseudopotential phase-change lattice Boltzmann method. The results of the mixed wettability rough surface are compared with completely hydrophilic rough surface and mixed wettability smooth surface to understand the effects of wettability and surface roughness. The focus is placed on the hydrodynamic interaction (which has promotive effect on the bubble formation activity) and thermal interaction (which has inhibitive effect). There exists an optimum pitch distance at which the heat flux and heat transfer coefficient are highest for mixed wettability surface, which are due to larger intensity of hydrodynamic interaction and nearly zero intensity of thermal interaction. Moreover, heat flux is found to be larger for the mixed wettability rough surface than the mixed wettability smooth surface. The bubble nucleation mechanism and time are found to be different for all surfaces.
机译:为了在混合润湿性表面上实现最佳的传热性能,润湿性图案的工程通常用作传热性能,显着取决于疏水点之间的间距距离,这可能与成核位点相互作用效应相连。在这项工作中,研究了在亲水表面(混合润湿性粗糙表面)之间的两个疏水性腔之间的成核位点相互作用的影响,采用二维伪势相变格螺栓玻璃法。将混合润湿性粗糙表面的结果与完全亲水性粗糙表面和混合润湿性光滑表面进行比较,以了解润湿性和表面粗糙度的影响。将重点放在流体动力学相互作用(对气泡形成活性的促进作用)和热相互作用(具有抑制作用)。在混合润湿性表面存在热通量和传热系数的最佳间距距离,其是由于更大的流体动力相互作用强度和近零热相互作用强度。此外,对于混合润湿性粗糙表面比混合润湿性光滑表面粗糙表面,发现热通量更大。发现泡沫成核机制和时间对于所有表面不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号