...
首页> 外文期刊>International journal of applied glass science >Ultrafast Laser Fabrication of Hybrid Micro- and Nano-Structures in Semiconductor-doped Borosilicate Glasses
【24h】

Ultrafast Laser Fabrication of Hybrid Micro- and Nano-Structures in Semiconductor-doped Borosilicate Glasses

机译:半导体掺杂硼硅酸盐玻璃中微结构和纳米结构混合的超快激光加工

获取原文
获取原文并翻译 | 示例
           

摘要

Femtosecond (fs)-laser processing of CdS_xSe_(1-x)-doped borosilicate glasses was investigated to create hybrid multiscale structures consisting of semiconductor nanocrystals embedded in microscopic domains defined by the laser irradiation. Laser processing was carried out with both low (1 KHz) and high (1 MHz) repetition rate fs-lasers using pulse fluences between 2 and 2000 J/cm~2 and sample scan speeds ranging from 0.05 to 4 mm/s. The samples were subsequently heat-treated at temperatures between 500 and 600℃ and characterized using optical microscopy, electron microscopy, wave dispersive x-ray spectroscopy (WDS), and confocal fluorescence microscopy. For 1-KHz laser processing conditions, nanocrystal precipitation showed no significant distinction between the modified and unmodified regions in the sample. Using a 1-MHz pulse repetition rate laser, however, we introduced chemical inhomogeneity across microscopic modifications, forming three chemically distinct regions: sodium and potassium-rich, zinc rich, and silicon rich. These regions exhibited different semiconductor precipitation dynamics, with the sodium and potassium-rich region showing strong preferential precipitation of cadmium sulfo-selenide nanoparticles, thereby localizing quantum dot precipitation to these chemically defined microcrucibles in the glass.
机译:研究了掺CdS_xSe_(1-x)的硼硅酸盐玻璃的飞秒(fs)激光加工过程,以创建由半导体纳米晶体组成的杂化多尺度结构,该结构嵌入了由激光辐照定义的微观区域。使用2至2000 J / cm〜2的脉冲通量和0.05至4 mm / s的样品扫描速度,以低(1 KHz)和高(1 MHz)重复频率fs激光进行激光加工。随后将样品在500至600℃的温度下进行热处理,并使用光学显微镜,电子显微镜,波色散X射线光谱(WDS)和共聚焦荧光显微镜进行表征。对于1-KHz激光加工条件,纳米晶体沉淀在样品的修饰区和未修饰区之间没有显着区别。但是,使用1 MHz脉冲重复频率激光,我们通过微观修改引入了化学不均一性,形成了三个化学上不同的区域:富含钠和钾,富含锌和富含硅。这些区域表现出不同的半导体沉淀动力学,富钠和钾的区域显示出硫硒硒化镉纳米颗粒的强烈优先沉淀,从而将量子点沉淀定位于玻璃中这些化学定义的微坩埚。

著录项

  • 来源
  • 作者单位

    University of California, Davis, California 95616;

    University of California, Davis, California 95616;

    University of California, Davis, California 95616;

    Polaronyx, 2526 Qume Drive, Suites 17 & 18, San Jose, California 95131;

    Polaronyx, 2526 Qume Drive, Suites 17 & 18, San Jose, California 95131;

    Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616;

    Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号