首页> 外文期刊>International journal of green energy >Integration of the detailed channel two-phase flow into three-dimensional multi-phase simulation of proton exchange membrane electrolyzer cell
【24h】

Integration of the detailed channel two-phase flow into three-dimensional multi-phase simulation of proton exchange membrane electrolyzer cell

机译:将详细信道两相流集成到质子交换膜电解槽电池的三维多相模拟中

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we proposed a novel method that integrates the detailed channel two-phase flow into the 3D (three-dimensional) multi-phase full-cell model of PEMEC (proton exchange membrane electrolyzer cell), which makes it able to predict the effect of oxygen in anode channel on the transport phenomena in the porous electrode and cell performance. It is found that if neglecting the oxygen in anode channel, the simulation results of parallel and serpentine flow fields using 3D full-cell model will be almost the same, which is contrary to the experimental results. But if we add the oxygen volume fraction distribution at the interface of channel and L/GDL (liquid/gas diffusion layer) into the 3D full-cell model as the boundary condition of oxygen equation solved in the porous electrodes, the simulated polarization curves will fit the experimental data reasonably, indicating that the oxygen in anode channel cannot be neglected. In addition, the channel oxygen plays a vital role in the distributions of oxygen, current density, and temperature in the porous electrodes mainly because it largely hinders the oxygen removal process. Then, we extended it to the integration of modeling the detailed channel two-phase flow by VOF (volume of fluid) method into the 3D multi-phase model of PEMEC. Based on this integration method, the influence of oxygen in anode channel on the transport phenomena and cell performance can be investigated in detail.
机译:在这项研究中,我们提出了一种新的方法,该方法将详细的信道两相流集成到Pemec(质子交换膜电解槽单元)的3D(三维)多相全单元模型中,这使得能够预测氧气在多孔电极和细胞性能下阳极通道对阳极通道的影响。结果发现,如果忽略阳极通道中的氧气,则使用3D全电池模型的平行和蛇形流场的模拟结果几乎相同,这与实验结果相反。但是,如果我们将通道和L / GDL(液体/气体扩散层)的界面处的氧容积分量分布添加到3D全电池模型中作为在多孔电极中求解的氧方程的边界条件,则模拟偏振曲线将合理地适合实验数据,表明阳极通道中的氧气不能被忽略。此外,通道氧在多孔电极的氧气,电流密度和温度的分布中起着至关重要的作用,主要是因为它很大程度上阻碍了氧去除过程。然后,我们将其扩展到将vof(流体)方法的详细信道两相流模型集成到Pemec的3D多相模型中。基于该积分方法,可以详细研究阳极通道对阳极通道的影响和细胞性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号