首页> 外文期刊>International Journal of Heat and Mass Transfer >Thermal diode using controlled capillary in heterogeneous nanopores
【24h】

Thermal diode using controlled capillary in heterogeneous nanopores

机译:在异质纳米孔中使用受控毛细管的热敏二极管

获取原文
获取原文并翻译 | 示例
           

摘要

The development of a compact, efficient, reliable thermal diode is crucial to improve advanced thermal management efficiency and controllability, and to enable brand new applications such as thermal logic gates and computers. In this study, we examine a nanoscale and efficient capillary-controlled thermal diode mechanism in Ar-filled Pt-based heterogeneous nanoporous structures, using Grand Canonical Monte Carlo (GCMC) simulation combined with Non-Equilibrium Molecular Dynamics (NEMD) simulation at the temperature range of 70-150 K and the pressure of 1.66 atm. Results show that the large thermal conductivity contrast between the controlled adsorption and capillary states using the structural heterogeneity (nanopillars on only one surface) and/or material heterogeneity (two different materials for nanogap surfaces) allows for the maximum thermal rectification ratio, R-max similar to 140 with minimal hysteresis under the cyclic operating temperatures -40 K Delta T +40 K. It is also found that the material heterogeneity is equivalent to the structural heterogeneity for minimizing the hysteresis in adsorption-capillary transition, but the heat flux across the nanogap with the material heterogeneity reduces due to weaker Ar-solid interaction. The coupled structural-material heterogeneity for the capillary-driven thermal diode is also discussed. The obtained results pave pathways for advanced thermal management systems such as thermal transistors, thermal logic gates, and computers. (C) 2018 Elsevier Ltd. All rights reserved.
机译:紧凑,高效,可靠的热敏二极管的开发对于提高先进的热管理效率和可控性以及实现全新的应用(例如热逻辑门和计算机)至关重要。在这项研究中,我们使用大正则蒙特卡罗(GCMC)模拟与非平衡分子动力学(NEMD)模拟相结合的方法,研究了Ar填充的Pt基异质纳米多孔结构中的纳米级高效毛细管控制热二极管机理。范围70-150 K,压力1.66 atm。结果表明,使用结构异质性(仅一个表面上的纳米柱)和/或材料异质性(纳米间隙表面使用两种不同的材料),在受控的吸附状态和毛细管状态之间存在较大的导热系数差异,从而可实现最大的热精馏比R-max类似于140,在-40 K

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号