首页> 外文期刊>International Journal of Heat and Mass Transfer >Role of differential vs Rayleigh-Benard heating at curved walls for efficient processing via entropy generation approach
【24h】

Role of differential vs Rayleigh-Benard heating at curved walls for efficient processing via entropy generation approach

机译:通过熵生成方法有效处理弧形壁上的差速与瑞利-贝纳德加热的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The present study deals with the finite element based numerical simulations of heat transfer and entropy generation rates during natural convection for fluid saturated porous media in enclosures involving curved walls (case 1: lower curvature and case 2: higher curvature) with various thermal boundary conditions. The differential heating (isothermally hot left wall and cold right wall and adiabatic horizontal walls) and Rayleigh-Benard heating (isothermally hot bottom wall and cold top wall involving adiabatic left and right walls) are considered. The locations and magnitudes of the entropy generation due to heat transfer (S-theta) and fluid friction (S-psi) are presented and discussed based on the spatial distributions of isotherms and streamlines, respectively. The magnitudes of local entropy generation (S-theta, S-psi), total entropy generation (S-total) and average heat transfer rates ((N-ur) over bar and (N-ut) over bar) are significantly lesser for the Rayleigh-Benard heating compared to the differential heating for all the cases involving all Da(m) and Pr-m. The Rayleigh-Benard heating is the optimal strategy for all Da(m), and Pr-m, involving both the concave cases except for 10(-3) = Da(m) = 10(-2), Pr-m = 10 and case 1 (concave) domain. The Rayleigh-Benard heating is also the optimal strategy compared to the differential heating involving the convex cases at 10(-5) = Da(m) = 10(-4) whereas the differential heating is the optimal heating strategy for Da(m) = 10(-3) involving both Pr-m for the convex cases. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本研究研究了基于饱和流的有限热交换条件下数值模拟,该条件是在具有各种热边界条件的弯曲壁体(情况1:曲率较小,情况2:曲率较高)的情况下,流体饱和多孔介质在自然对流过程中的传热和熵产生率。考虑了差温加热(等温热的左壁和冷的右壁以及绝热的水平壁)和瑞利-贝纳德加热(等温热的底壁和冷的顶壁,涉及绝热的左右壁)。分别基于等温线和流线的空间分布,介绍和讨论了由于传热(S-theta)和流体摩擦(S-psi)而产生的熵的位置和大小。局部熵产生的大小(S-theta,S-psi),总熵产生的大小(S-total)和平均传热速率(bar上的(N-ur)和bar上的(N-ut))明显较小在涉及所有Da(m)和Pr-m的所有情况下,将Rayleigh-Benard加热与差动加热进行比较。 Rayleigh-Benard加热是所有Da(m)和Pr-m的最佳策略,除了10(-3)<= Da(m)<= 10(-2),Pr-m外,还涉及两个凹形情况= 10,且案例1(凹)域。与在10(-5)<= Da(m)<= 10(-4)的凸壳情况下进行的差温加热相比,瑞利-贝纳德加热也是一种最佳策略,而对于Da( m)> = 10(-3),涉及凸情况下的两个Pr-m。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号