首页> 外文期刊>International Journal of Heat and Mass Transfer >Influences of effusion hole diameter on impingement/effusion cooling performance at turbine blade leading edge
【24h】

Influences of effusion hole diameter on impingement/effusion cooling performance at turbine blade leading edge

机译:排气孔直径对涡轮叶片前缘冲击/冷却性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper numerically investigates the effects of the film cooling hole diameter and the film cooling hole location on the impingement/effusion cooling performance inside a concave target channel. Three film cooling hole rows are established on the target surface under two arrangements. In the first arrangement, the inclined angle between the film cooling hole axis and jet hole axis is 0 degrees, -60 degrees, 60 degrees respectively. In the second arrangement, the inclined angle is 0 degrees, -30 degrees, 30 degrees respectively. In the first effusion hole arrangement, numerical simulations are conducted under three Reynolds numbers. In the second effusion hole arrangement, numerical simulations are only conducted under the middle Reynolds number. Four film cooling hole diameters of 0.4D, 0.6D, 0.8D, 1.0D are studied based on a fixed jet hole diameter of D = 10 mm. The heat transfer performance, pumping power and overall performance are evaluated and compared. Effusion air distribution and static pressure distribution are analysed. Flow development inside the target channel is compared and discussed. Nusselt number distribution is evaluated and compared. Results show that the effusion air mass flow rate and the flow development inside the target channel are obviously affected by the film cooling hole diameter and film cooling hole location. The heat transfer performance is also significantly affected by the film cooling hole diameter and film cooling hole location. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文数值研究了膜冷却孔直径和膜冷却孔位置对凹靶通道内冲击/渗出冷却性能的影响。在目标表面上以两种布置方式设置了三排薄膜冷却孔。在第一布置中,膜冷却孔轴线与喷射孔轴线之间的倾斜角分别为0度,-60度,60度。在第二布置中,倾斜角分别是0度,-30度,30度。在第一个积液孔布置中,在三个雷诺数下进行了数值模拟。在第二个喷孔布置中,仅在中间雷诺数下进行数值模拟。基于固定的喷射孔直径D = 10 mm,研究了四个膜冷却孔直径,分别为0.4D,0.6D,0.8D,1.0D。评估并比较了传热性能,泵送功率和整体性能。分析了出风空气分布和静压分布。比较并讨论了目标通道内的流发展。评估和比较努塞尔数分布。结果表明,喷出空气质量流量和目标通道内部的流动发展明显受到膜冷却孔直径和膜冷却孔位置的影响。膜冷却孔直径和膜冷却孔位置也显着影响传热性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号