首页> 外文期刊>International Journal of Heat and Mass Transfer >Effect of nano-film thickness on thermal resistance at water/silicon interface
【24h】

Effect of nano-film thickness on thermal resistance at water/silicon interface

机译:纳米膜厚度对水/硅界面热阻的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Parallel to the developments in microano manufacturing techniques, component sizes in microano electro mechanical systems have been decreasing to nanometer scales. Decrease in lengths in heat transfer direction below the heat carrier phonon length scales reduces thermal conduction in semiconductors. This study shows that such altered phonon spectrums with the decrease of size also reduce the heat transfer at the solid/liquid interfaces and can be correlated with the thermal conductivity of the slab. Using Molecular Dynamics (MD), we measured heat transfer between water and silicon of different thickness between 5 nm and 60 nm. Silicon slabs exhibit a linear temperature profile through the bulk where thermal conductivities measured based on Fourier law decreased by the decreasing slab thickness. We applied a semi-theoretical formulism on variation of conductivity by slab thickness. At the interface of these slabs and water, heat passage is disturbed due to the phonon mismatch of dissimilar materials, which is mostly considered as solid/liquid couple interface properties by the earlier literature. Resistance for phonon passage characterized as Kapitza length (L-K) is measured for different slab thicknesses at different surface wetting conditions varying between hydrophilic to hydrophobic. Increasing surface wetting decreases the L-K while at a certain wetting, decreasing the slab thickness increases the L-K. Once the L-K of different size slabs normalized by its bulk value (assumed to be the L-K of the thickest slab at the corresponding wetting), L-K variation by silicon thickness shows a universal behavior independent of surface wetting. A mathematical model describing the exponential increase of L-K by decreasing thickness was developed and validated by an earlier model. We further developed a correlation between the corresponding changes of L-K and conductivity with respective to their bulk values by analytically combining two models as (L-K/L-K-(Bulk)) = exp (3.94(k(Bulk) - k)/(k x k(Bulk))), using which L-K can be predicted from available thermal conductivities of a certain material. Results are crucial for thermal management of current and future electronics. (C) 2019 Elsevier Ltd. All rights reserved.
机译:与微/纳米制造技术的发展并行,微/纳米机电系统中的组件尺寸已减小至纳米级。在热传递声子长度尺度以下的传热方向上的长度减小会减少半导体中的热传导。这项研究表明,随着尺寸的减小,这种变化的声子光谱也会减少固/液界面的传热,并且可能与板坯的热导率相关。使用分子动力学(MD),我们测量了水和5纳米至60纳米之间不同厚度的硅之间的热传递。硅平板在整个块体内均呈现线性温度分布,其中根据傅立叶定律测得的热导率随平板厚度的减小而降低。我们对板坯厚度随电导率的变化应用了半理论公式。在这些平板与水的界面处,由于异种材料的声子失配而使热通过受到干扰,早期文献通常将其视为固/液耦合界面性质。在亲水性和疏水性之间变化的不同表面润湿条件下,对于不同的平板厚度,测量了表征为Kapitza长度(L-K)的声子通过阻力。增加表面润湿性会降低L-K,而在一定润湿度下,减小板坯厚度会增加L-K。一旦通过其体积值将不同尺寸的平板的L-K归一化(假定为在相应的润湿时最厚平板的L-K),硅厚度的L-K变化就显示出与表面润湿无关的普遍行为。建立了描述通过减小厚度使L-K指数增加的数学模型,并通过较早的模型进行了验证。通过将(LK / LK-(Bulk))= exp(3.94(k(Bulk)-k)/(kxk(大量))),使用该LK可以从某种材料的可用热导率来预测。结果对于当前和未来电子设备的热管理至关重要。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号