首页> 外文期刊>International Journal of Heat and Mass Transfer >Attached flow formed by opposing jet in hyper/supersonic flow
【24h】

Attached flow formed by opposing jet in hyper/supersonic flow

机译:在高/超音速流中由反向射流形成的附着流

获取原文
获取原文并翻译 | 示例
           

摘要

In current paper, a numerical study by ANSYS FLUENT software has been carried out on the opposing jet in hyper/supersonic flow. In incoming Mach number 6, flow fields around two head-shape models, namely a hemisphere-cylinder and a cone-cylinder, are calculated, respectively. Air and helium of different temperatures as the injection gases were injected through the sonic nozzle at the nose of the model. In order to track the motion of the opposing jet, we employ the species transport model together with the axisymmetric Navier-Stokes equations as the physical model. And find, due to the effect of the bow shock on the opposing jet, the opposing jet flows back and form an attached flow instead of the incoming high temperature air tightly around the model surface, which effectively achieve the wall heat reduction. Moreover, the higher the incoming Mach number, the more significant the percentage reduction of the wall heat transfer rate is. Helium injection has more advantageous than air injection at lower total pressure ratios. The position and size of the recirculation vortex formed by the opposing-jet attached flow have the direct relationship with the fluctuation range of wall characteristic parameters. The smaller the ratio of the model geometric curvature and recirculation size, the smaller the fluctuation amplitudes of wall characteristic parameters are. By adjusting the injection gaseous parameters, it is hopeful to control the near-wall flow features and the aircraft head-shape conversions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在目前的论文中,已经通过ANSYS FLUENT软件对高/超音速流中的反向射流进行了数值研究。在输入的马赫数6中,分别计算了两个头部形状模型(即半球形圆柱体和圆锥形圆柱体)周围的流场。随着注入气体通过模型鼻部的声波喷嘴注入,温度和温度不同的空气和氦气。为了跟踪对立射流的运动,我们采用了物种迁移模型以及轴对称Navier-Stokes方程作为物理模型。并且发现,由于弓形冲击对相对射流的影响,相对射流向后流动并形成附着流,而不是紧紧围绕模型表面进入高温空气,这有效地实现了壁的热量减少。此外,输入马赫数越高,壁传热率的降低百分比就越显着。在较低的总压力比下,氦气注入比空气注入更具优势。由反向喷射附连流形成的再循环涡流的位置和大小与壁特征参数的波动范围直接相关。模型几何曲率与回流尺寸之比越小,墙面特征参数的波动幅度越小。通过调整喷射气体参数,希望能够控制近壁流动特征和飞机机头形状的转换。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号