首页> 外文期刊>International Journal of Heat and Mass Transfer >Mass diffusivity and thermal conductivity estimation of chloride-based salt hydrates for thermo-chemical heat storage: A molecular dynamics study using the reactive force field.
【24h】

Mass diffusivity and thermal conductivity estimation of chloride-based salt hydrates for thermo-chemical heat storage: A molecular dynamics study using the reactive force field.

机译:用于热化学蓄热的氯化物基盐水合物的质量扩散率和热导率估算:使用反作用力场的分子动力学研究。

获取原文
获取原文并翻译 | 示例
           

摘要

Mixed salt hydrates recently proved to be promising potential candidates for long-term heat storage. Among them, MgCl_2 and CaCl_2 are two widely used salts able to store energy via a reversible hydration/dehydration cycle. The hydration/dehydration of the salts is influenced by thermal and structural material characteristics. To be able to study the complete behavior of the hydration/dehydration cycle including material transformation and degradation, molecular scale modeling is essential. Reliable reactive force fields transferable to different levels of system hydration/dehydration are needed in order to reproduce the material characteristics. Two new transferable force field for MgCl_2 and CaCl_2 are proposed and used to investigate the heat and mass transport for the salt hydrates. Using these new force fields, the diffusion coefficient of water through MgCl_2.nH_20 (n =1 to 6) is found to be in the range 10~(-11) to 10~(-9) m~2/s and comparable to experimental values. The surface effects were found to play a negligible role for MgCl_2.6H_2O while for the other hydrates surface effects play a noticeable role in the dehydration reaction. The thermal conductivities showed an increase with hydration state from 0.3-0.9 W/mK for all MgCl_2 hydrates. A strong anisotropy for thermal conduction for MgCl_2.6H_2O is observed. The thermal conductivities of these two salts and their hydrates show that mixing will not impair the thermal conductivity of the storage system but it will have a strong effect on the competing hydrolysis reaction.
机译:混合盐水合物最近被证明是长期储热的有希望的潜在候选者。其中,MgCl_2和CaCl_2是两种广泛使用的盐,能够通过可逆的水合/脱水循环存储能量。盐的水合/脱水受热和结构材料特性的影响。为了能够研究水合/脱水循环的完整行为,包括材料的转化和降解,分子尺度建模是必不可少的。为了再现材料特性,需要可靠的反作用力场,其可传递至不同水平的系统水合/脱水。提出了MgCl_2和CaCl_2的两个新的可传递力场,并用于研究盐水合物的传热和传质。利用这些新的力场,发现水通过MgCl_2.nH_20的扩散系数(n = 1至6)在10〜(-11)至10〜(-9)m〜2 / s的范围内,与实验值。发现表面作用对MgCl_2.6H_2O的作用可忽略不计,而对于其他水合物,表面作用在脱水反应中起显着作用。对于所有的MgCl_2水合物,热导率随水合状态从0.3-0.9 W / mK增加。观察到MgCl_2.6H_2O具有很强的热传导各向异性。这两种盐及其水合物的热导率表明混合不会损害存储系统的热导率,但会对竞争的水解反应产生强烈影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号