首页> 外文期刊>International Journal of Heat and Mass Transfer >Performance enhancement of a shell-and-tube evaporator using Al_2O_3/R600a nanorefrigerant
【24h】

Performance enhancement of a shell-and-tube evaporator using Al_2O_3/R600a nanorefrigerant

机译:使用AL_2O_3 / R600A纳米FRANGER的壳管蒸发器的性能增强

获取原文
获取原文并翻译 | 示例
           

摘要

To meet the growing energy demand of modern refrigeration and air conditioning systems, thermal properties of conventional refrigerants must be improved. Suspension of nanoparticles into refrigerants, thereby forming a nanofluid, also known as nanorefrigerant is an observed method to enhance the ther-mophysical and heat transfer characteristics of the base refrigerant. In this paper, an attempt has been made to evaluate numerically overall performances of a shell and tube evaporator using Al_2O_3/R600a nanorefrigerant as the working substance. A model is developed using the available correlations of nanofluids to analyse the flow boiling heat transfer characteristics of the nanorefrigerant inside the tubes and to compare its performances with those of the pure refrigerant. Boiling and pressure drop models of nanorefrigerant in evaporator is solved numerically using EES software and the results show that along with overall heat transfer coefficient and cooling capacity of the evaporator, pumping power also increases with increase in nanoparticle concentration. Regression models of evaporator cooling capacity and total pumping power are developed using analysis of variance (ANOVA) tool in response surface methodology (RSM). A multi-object optimization is carried out to choose the right concentration of nanoparticles and tube diameter, which will maximize the amount of heat transfer and minimize the total pumping power of the fluids in the evaporator. Optimization results indicate that the best possible values of evaporator cooling capacity and total pumping power are 9.23 kW and 1.39 kW respectively for 13.7 mm tube diameter and nanoparticle weight fraction of 0.0268 within the investigated range of tube diameter of 10-18 mm and weight fraction of 0-5%. These optimization results contribute to the understanding of heat transfer and pressure drop balance on using nanorefrigerants and also define the limit of nanoparticle concentration for such evaporator configurations.
机译:为了满足现代制冷和空调系统的不断增长的能源需求,必须改善传统制冷剂的热性能。将纳米颗粒悬浮到制冷剂中,从而形成纳米流体,也称为纳米Frufiger是一种观察到的方法,以增强基础制冷剂的肌肉和传热特性。在本文中,已经尝试使用Al_2O_3 / R600A纳米Fr剂作为工作物质评估壳和管蒸发器的数值总体性能。使用纳米流体的可用相关性开发了一种模型,以分析管内纳米福利剂的流沸热特性,并将其与纯制冷剂的性能进行比较。使用EES软件在数值上求解蒸发器中纳米福利剂的沸腾和压降模型,结果表明,随着蒸发器的整体传热系数和冷却能力,泵浦功率也随纳米颗粒浓度的增加而增加。蒸发器冷却能力的回归模型和总泵送功率使用响应表面方法(RSM)的差异分析(ANOVA)工具开发。进行多物体优化以选择纳米颗粒和管直径的正确浓度,这将最大化传热量并最小化蒸发器中的流体的总泵送功率。优化结果表明,蒸发器冷却能力和总泵送功率的最佳值分别为9.23千瓦,分别为1.0268的管直径为0.0268的纳米颗粒重量分别为0.0268的10-18mm,重量分数0-5%。这些优化结果有助于了解使用纳米福制剂对传热和压降平衡的理解,并且还限定了这种蒸发器构造的纳米颗粒浓度的极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号