首页> 外文期刊>International Journal of Heat and Mass Transfer >Analytical model for electromagnetic induction in pulsating ferrofluid pipe flows
【24h】

Analytical model for electromagnetic induction in pulsating ferrofluid pipe flows

机译:脉动铁磁流体管道电磁诱导的分析模型

获取原文
获取原文并翻译 | 示例
           

摘要

Energy harvesting processes using ferrofluidic induction-a process that generates voltage via the pulsation of a ferrofluid (iron-based nanofluid) through a solenoid-have received increasing attention over the past decade. In this paper an analytical model is proposed to predict the induced electromotive force (EMF) based on the flow behavior and magnetic properties of a pulsating ferrofluid energy harvesting device. The ferrofluid is treated as an idealized series of discrete magnetic 'slugs' within passing through the solenoid, and the model identifies key parameters for describing and optimizing ferrofluidic induction in pulsating pipe flows. The resulting expression for induced EMF as a function of slug position relative to the solenoid is numerically integrated to determine the root mean square (RMS) of EMF during one pulsation cycle. Data from a previously documented study using an experimental induced EMF test rig is analyzed to find corresponding measured values of EMF RMS and used to validate the analytical model. Experimental and analytical results both show an increase in induced EMF with higher pulse frequency, increased number of bias magnets, and reduced spacing between the magnet and solenoid. At low magnetic flux densities and pumping frequencies, the EMF is negligible; with 0.3 mT magnetic flux density and 9 and 18 Hz pumping frequencies the measured RMS is nominally zero. For a 9 Hz pumping frequency the RMS value of the induced EMF is less than 1 μV at all magnetic flux densities. For the highest pumping frequency examined, 30 Hz, the induced EMF RMS is greater than 1 μV for all magnetic flux densities greater than 0.7 mT. As the experimentally measured values of EMF lie within the uncertainty bounds of the model, induced EMF can be predicted within an order of magnitude for magnetic fluid-induced energy harvesting systems.
机译:使用铁磁流体感应的能量收集过程 - 通过螺线管通过螺线管通过螺线管(铁基纳米流体)的脉动产生电压的过程 - 在过去十年中得到了越来越多的关注。本文提出了一种分析模型,以基于脉动铁磁流体能量收集装置的流动行为和磁性来预测感应电动力(EMF)。将铁磁流体被视为通过螺线管内的理想化磁力“Slugs”的理想化系列,并且该模型识别用于描述和优化脉动管道流量中的铁磁流体感应的关键参数。作为相对于螺线管相对于螺线管的函数的所得EMF的所得表达在数上集成以在一个脉动循环期间确定EMF的根均线(RMS)。通过先前记录的研究使用实验诱导的EMF测试钻机的数据被分析以查找EMF RMS的相应测量值并用于验证分析模型。实验性和分析结果既显示脉冲频率较高,偏置磁铁数量增加,偏置磁体数量增加,磁体和螺线管之间的间距减小。在低磁通密度和泵送频率下,EMF可忽略不计;具有0.3 MT的磁通密度和9和18 Hz泵送频率,测量的RMS标称为零。对于9Hz泵送频率,诱导的EMF的RMS值在所有磁通密度下小于1μV。对于所检查的最高泵送频率,30Hz,诱导的EMF rms大于1μV,对于大于0.7 mt的所有磁通密度大于1μV。由于EMF的实验测量值位于模型的不确定性范围内,因此可以在磁流体诱导的能量收集系统的幅度下预测诱导的EMF。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第8期|121325.1-121325.10|共10页
  • 作者单位

    Department of Aerospace and Mechanical Engineering University of Oklahoma Norman OK 73019 United States;

    Engineer Research and Development Center (ERDC) US Army Vicksburg Mississippi 39180 United States;

    Sigonas Fruit for Thought San Carlos CA 94070 United States;

    University of Dayton Research Institute University of Dayton Dayton Ohio 45469 United States;

    Chemical and Materials Engineering Department University of Dayton Dayton Ohio 45469 United States;

    Department of Mechanical and Nuclear Engineering Kansas State University Manhattan KS 66506 United States;

    Department of Physics Kansas State University Manhattan Kansas 66506 United States;

    Department of Aerospace and Mechanical Engineering University of Oklahoma Norman OK 73019 United States;

    School of Chemical Biological and Materials Engineering University of Oklahoma Norman Oklahoma 73019 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Analytical model; Ferrofluidic induction; Ferrofluid; Pulsating flow; Energy harvesting; Solenoid;

    机译:分析模型;Ferrofluidic诱导;Ferrofluid;脉动流动;能量收集;螺线管;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号