首页> 外文期刊>International Journal of Heat and Mass Transfer >Interfacial water management of gradient microporous layer for self-humidifying proton exchange membrane fuel cells
【24h】

Interfacial water management of gradient microporous layer for self-humidifying proton exchange membrane fuel cells

机译:自加湿质子交换膜燃料电池梯度微孔层的界面水管理

获取原文
获取原文并翻译 | 示例
           

摘要

Proton exchange membrane fuel cells (PEMFCs) are expected to reveal high adaptability at different operating conditions. One of the key challenges is interfacial water management of microporous layer (MPL) at dry condition. In this paper, MPLs with different structure were prepared for self-humidifying PEMFCs. It was found that when hydrophilic and hydrophobic carbon powder were respectively applied near catalyst layer (CL) and macroporous substrate (MPS), the membrane electrode assembly (MEA) revealed a stable performance at varying humidity condition. When carbon powder employed in the opposite structure, a hydraulic barrier formed at the interface of CL and MPL. These results were demonstrated by a three-dimensional numerical modeling that the intrusion of product water into the hydrophobic pore was decelerated. The gradient-porous MPLs were also prepared to evaluate their practicability at dry condition. Significantly, the MEAs containing gradient-porous MPL revealed a high response on humidity condition. It is attributed that the high pore volume provided more space for gas permeation, and the gradient-porous structure accelerated the water removal. Hence, this work reveals the relation between structural design and performance of MPL at relatively dry conditions. The findings in this study provide a promising strategy for the optimization of self-humidifying PEMFCs.
机译:预计质子交换膜燃料电池(PEMFC)将在不同的操作条件下揭示高适应性。关键挑战之一是干燥条件下微孔层(MPL)的界面水管理。在本文中,为自加湿PEMFC制备具有不同结构的MPLS。发现,当亲水和疏水碳粉末分别施加在催化剂层(CL)和大孔基材(MPS)附近时,膜电极组件(MEA)在不同的湿度条件下揭示了稳定的性能。当在相对的结构中采用碳粉时,在CL和MPL的界面处形成的液压屏障。通过三维数值模型证明了这些结果,即减速产物水进入疏水性孔的侵入。还制备梯度多孔的MPLS以在干燥条件下评估其实际性。值得注意的是,含有梯度多孔MPL的测量呈现对湿度条件的高响应。归因于高孔体积提供更多的气体渗透空间,并且梯度多孔结构加速了除水分。因此,这项工作揭示了结构设计和MPL在相对干燥条件下的性能之间的关系。本研究中的调查结果为优化自我加湿PEMFC提供了有希望的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号