首页> 外文期刊>International Journal of Heat and Mass Transfer >Enhancement of vapor condensation heat transfer on the micro- and nano-structured superhydrophobic surfaces
【24h】

Enhancement of vapor condensation heat transfer on the micro- and nano-structured superhydrophobic surfaces

机译:增强微型和纳米结构超疏水表面上的蒸汽凝结热传递

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, micro- or nano- structured surfaces haven been developed to enhance condensation heat transfer, water harvesting and self-cleaning. However, at large subcoolings, condensate floods the subcooled substrate, thus deteriorating the heat transfer efficiency. Here, the superhydrophobic surfaces with mi-cropillared and nanopillared structures are proposed to enhance heat transfer at large subcoolings. The influence of micropillar spacing and surface subcooling on the droplet dynamics and heat transfer performance is experimentally investigated using microscopic visualization techniques. In addition, the microscopic modeling of condensation heat transfer on the microstructured surfaces is performed using the mesoscopic lattice Boltzmann method. The results demonstrate that the droplet size distribution on the micropillared surface is significantly smaller over that of the nanostructured surface. The heat transfer coefficient decreases with the increase of micropillar spacing. As the subcooling rises, although the condensate floods the substrate, the heat transfer coefficient of the S10R30 (S10R30 represents the micropillar arrays with s = 10 μm and 2r = 60 μm) surface is enhanced by 26.4% compared to the hydrophobic nanostructured surface. This is because the height of liquid film is the same of order of magnitude as the micropillars, reducing the thermal resistance caused by the liquid layer. Combining environmental scanning electron microscope (ESEM) observations and LB simulation results, it is concluded that the droplets first nucleate at the bottom corner of micropillars. In addition, the condensate droplets merge to form a film, fill the micropillar gaps, and cover the entire micropillars, leading to a sharp decrease in heat flux. These findings provide a theoretical and experimental guidance for the development of condensing surfaces to enhance heat transfer.
机译:最近,微型或纳米结构表面已经开发出来,以增强冷凝传热,采集水收集和自清洁。然而,在大量过冷处,冷凝水泛源脱池基板,从而劣化传热效率。这里,提出了具有Mi-emachillaRed和纳米粒子结构的超疏水表面,以增强大量过脱机的热传递。使用微观可视化技术实验研究了微米间距和表面过冷对液滴动力学和传热性能的影响。另外,使用介于镜片晶格Boltzmann方法进行微观结构表面上的冷凝传热的微观建模。结果表明,微储物表面上的液滴尺寸分布在纳米结构表面的液体上显着较小。随着微米间距的增加,传热系数降低。由于过冷升起,尽管冷凝物泛洪底物,但与疏水性纳米结构表面相比,S10R30(S10R30表示具有S =10μm和2r =60μm)表面的传热系数的热传递系数。这是因为液体膜的高度与尺寸的阶数与微米相同,因此降低了由液体层引起的热阻。结合环境扫描电子显微镜(ESEM)观测和LB仿真结果,得出结论,液滴在微米底部的底部进行核心。另外,冷凝物液滴合并形成薄膜,填充微米间隙,并覆盖整个微米,导致热通量的急剧下降。这些发现提供了用于增强传热的冷凝表面的理论和实验指导。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第10期|121526.1-121526.13|共13页
  • 作者单位

    School of Energy and Environment Southeast University Nanjing China;

    School of Energy and Environment Southeast University Nanjing China;

    Key Laboratory of Microgravity Institute of Mechanics Chinese Academy of Sciences Beijing China;

    Engineering and technology center for space applications Chinese Academy of Sciences Beijing China;

    School of Energy and Environment Southeast University Nanjing China Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing China Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology School of Energy and Environment Southeast University Nanjing China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Condensation heat transfer; Micropillar arrays; Lattice Boltzmann method; Droplet dynamics; ESEM;

    机译:冷凝传热;MicroPillar阵列;格子Boltzmann方法;液滴动力学;esem.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号