首页> 外文期刊>International Journal of Heat and Mass Transfer >Flow and heat transfer in a rotating channel with impingement cooling and film extraction
【24h】

Flow and heat transfer in a rotating channel with impingement cooling and film extraction

机译:具有冲击冷却和薄膜提取的旋转通道中的流动和传热

获取原文
获取原文并翻译 | 示例
           

摘要

Impingement cooling is applied on the turbine blade leading edge which suffers the highest heat transfer and needs priority protection. The current work focuses on the rotational effects in an impingement cooling channel with film extraction, in which heat transfer is obtained with experiment whereas the flow field is predicted by numerical simulation. The dimensionless spacing of jet-to-jet (s/D_j) and jet-to-target surface (l/D_j) are both 3. The jet Reynolds number and the channel orientation (the angle between jet direction and rotating orientation) are 5,000 and 135°, respectively. The jet rotation number changes from 0 to 0.24, and the maximum jet buoyancy number reaches 0.57. The results show that the heat transfer on the suction side is better than that on the pressure side where the recirculation region generates. The heat transfer deteriorates from high to low radius due to the non-uniform mass flow rate distribution. Once the channel rotates, the non-uniformity of mass flow rate increases because the vortex occurs in the supply channel, resulting in the heat transfer increase by 140% in the low radius region on the pressure side. On the pressure side in the impingement channel, the rotation-induced secondary flow breaks the recirculation region, promoting the heat transfer. On the suction side, however, the secondary flow and rotation-driven jet deflection decrease the heat transfer. Besides, the jet buoyancy number is inappropriate to describe the combined influences of jet rotation number and wall-to-fluid temperature ratio at high jet buoyancy number in current experimental conditions.
机译:冲击冷却施加在涡轮叶片前缘,其热传递最高,需要优先保护。目前工作侧重于具有薄膜提取的冲击冷却通道中的旋转效应,其中通过实验获得热传递,而通过数值模拟预测流场。喷射到射流(S / D_J)和射流到目标表面(L / D_J)的无量纲间距均为3.喷射雷诺数和沟道方向(喷射方向和旋转方向之间的角度)是5,000分别为135°。喷射旋转数从0变为0.24,最大喷射浮力数达到0.57。结果表明,吸入侧的热传递优于再循环区域产生的压力侧的热量。由于不均匀的质量流量分布,传热从高到低半径劣化。一旦通道旋转,质量流量的不均匀性就会增加,因为在电源通道中发生涡流,导致在压力侧的低半径区域中导致热传递增加140%。在冲击通道中的压力侧,旋转引起的二次流动破坏再循环区域,促进传热。然而,在吸入侧,二次流动和旋转驱动的射流偏转降低了热传递。此外,射流浮力数是在当前实验条件下的高喷射浮力数时描述射流旋转数和壁到流体温度比的组合影响。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第12期|121751.1-121751.16|共16页
  • 作者单位

    National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics School of Energy and Power Engineering Beijing University of Aeronautics and Astronautics Beijing 102206 China;

    National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics School of Energy and Power Engineering Beijing University of Aeronautics and Astronautics Beijing 102206 China;

    National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics School of Energy and Power Engineering Beijing University of Aeronautics and Astronautics Beijing 102206 China;

    National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics School of Energy and Power Engineering Beijing University of Aeronautics and Astronautics Beijing 102206 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Heat transfer; Flow field; Rotation; Impingement cooling; Film extraction;

    机译:传播热量;流场;回转;冲洗冷却;电影提取;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号