首页> 外文期刊>International Journal of Heat and Mass Transfer >Introducing the thermal field into multi-physics coupling for the modeling of MR fluid-based micro-brake
【24h】

Introducing the thermal field into multi-physics coupling for the modeling of MR fluid-based micro-brake

机译:将热场引入多物理耦合,以进行MR流体基微型制动器的建模

获取原文
获取原文并翻译 | 示例
           

摘要

Miniaturization of magnetorheological (MR) fluid-based actuator, as an essential building block of miniature electromechanical systems, is of significant importance. Since the feature size of miniature electromechanical systems 1-10 mm, the heat generation and dissipation process in the MR fluid would dramatically affect the speed reduction mechanism of micro-brake. The objective of this manuscript is to propose a model for the MR fluid-based micro-brake with high accuracy by introducing the thermal field into the multi-physics coupling. The temperature- and field-dependent rheological properties of MR fluid are investigated and the data is presented. The rheological behavior of MR fluid under the comprehensive effect of temperature field, magnetic field and flow field is modeled by introducing the Arrhenius equation. A COMSOL Multiphysics-based simulation method, which includes two heat sources, is proposed to calculate the thermal distribution of the miniature turbine generator under the multi-physics coupling. The influence of temperature on the yield stress τ_y and the influence of shear rate γ on viscosity η are also introduced into the MR fluid-based micro-brake to obtain a torque calculation model with high precision. The miniature turbine generator was driven with an initial rotational speed of 18,200 r/min. The temperature ranged from 41 to 123 °C as a current from 0.3 to 1.5 A was applied to the micro-brake. Results show that the accuracy has been improved more than 12.9% by introducing thermal analysis to the micro-brake model. We believe this work is significant for realizing the high precision control of MR fluid-based micro-brake at high rotational speeds.
机译:磁流变(MR)流体基执行器的小型化,作为微型机电系统的基本构建块,具有重要意义。由于微型机电系统的特征尺寸1-10mm,MR流体中的发热和耗散过程将显着影响微制动的减速机制。该稿件的目的是通过将热场引入多物理耦合来提出高精度的MR流体基微型制动器的模型。研究了MR流体的温度和现场依赖性流变性质,并提出了数据。通过引入Arrhenius方程,建模在温度场,磁场和流场综合效果下MR流体的流变行为。提出了一种包括两个热源的基于COMSOL多体学的仿真方法,以计算多物理耦合下微型汽轮机发生器的热分布。温度对屈服应力τ_y的影响及剪切速率γ的影响也被引入粘度η中的MR流体基微型制动器中,以获得高精度的扭矩计算模型。微型涡轮发电机被驱动,初始转速为18,200 r / min。将温度范围为41至123°C,将0.3至1.5a的电流施加到微制动器上。结果表明,通过对微制动模型引入热分析,精度已经提高了12.9%以上。我们认为这项工作对于实现高旋转速度的高精度控制MR流体基微型制动器的高精度控制很重要。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第12期|121785.1-121785.10|共10页
  • 作者单位

    School of Mechatronical Engineering Nanchang University Nanchang Jiangxi 330031 China;

    School of Mechatronical Engineering Nanchang University Nanchang Jiangxi 330031 China School of Mechatronical Engineering Beijing Institute of Technology Beijing 100081 China Jiangxi Province Key Laboratory of Precision Drive and Control Nanchang Jiangxi 330031 China;

    Institute of Electronic Engineering China Academy of Engineering Physics Mianyang 621999 China;

    College of Engineering and Technology Southwest University Chongqing 400716 China School of Engineering College of Engineering and Computer Science The Australian National University Canberra ACT 2601 Australia;

    School of Mechatronical Engineering Beijing Institute of Technology Beijing 100081 China Science and Technology on Electromechanical Dynamic Control Laboratory Beijing Institute of Technology Beijing 100081 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号