首页> 外文期刊>International Journal of Heat and Mass Transfer >Homogenized and pore-scale analyses of forced convection through open cell foams
【24h】

Homogenized and pore-scale analyses of forced convection through open cell foams

机译:通过开孔泡沫进行强制对流的均质化和孔尺度分析

获取原文
获取原文并翻译 | 示例
           

摘要

Open cell foams have desirable geometrical characteristics that make them a suitable choice in various heat exchanger applications. The objective of this study is to determine such volume-averaged key parameters that can characterize the complex thermal transportation process through open cell foams. These key parameters are represented by effective thermal conductivity, k(e), volumetric heat transfer coefficient, h(v), and dispersion conductivity, k(d). In order to determine these parameters, detailed pore-scale simulations through the representative element volumes (REVS) of the actual foam structures are performed. Moreover, knowing the fact that the successful implementation of simplified foam structures as a suitable representative of the actual foam structures can simplify the complexity of the problem, it is also investigated. In the presented work, various microscopic pore-scale models are implemented for both simplified and actual foam structures to determine the key parameters. Subsequently, these key parameters are implemented into two different homogenized macroscopic models to predict the temperature fields of large-scale steady-state and transient forced convection processes. The numerical outcomes of homogenized macroscopic models are validated with the experimental data, which is available for a set of ceramic foams having different pore size (10-30 PPI) and porosity (79-87%). As a consequence of the validation process, the findings of this study reveal that the proposed methodology successfully predicts the values of the concerned key parameters. Further, it is observed that simplified foam structures cannot represent the actual foam structures, as the tortuous shape of open cell foams bound to enhance the advection and dissipation of heat due to recirculation and eddy formation. (C) 2018 Elsevier Ltd. All rights reserved.
机译:开孔泡沫具有理想的几何特性,使其成为各种热交换器应用的合适选择。这项研究的目的是确定这样的体积平均关键参数,以表征通过开孔泡沫的复杂热传递过程。这些关键参数由有效导热系数k(e),体积传热系数h(v)和分散导热系数k(d)表示。为了确定这些参数,通过实际泡沫结构的代表性元素体积(REVS)进行了详细的孔隙尺度模拟。此外,已知将简化的泡沫结构成功地实现为实际泡沫结构的合适代表可以简化问题的复杂性这一事实,对此也进行了研究。在提出的工作中,为简化和实际的泡沫结构实现了各种微观孔隙尺度模型,以确定关键参数。随后,将这些关键参数实施到两个不同的均化宏观模型中,以预测大规模稳态和瞬态强迫对流过程的温度场。均质宏观模型的数值结果已通过实验数据验证,该数据可用于一组具有不同孔径(10-30 PPI)和孔隙率(79-87%)的陶瓷泡沫。作为验证过程的结果,这项研究的发现表明,所提出的方法成功地预测了相关关键参数的值。此外,观察到简化的泡沫结构不能代表实际的泡沫结构,因为开孔泡沫的曲折形状必然会由于再循环和涡流形成而增强对流和散热。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号