首页> 外文期刊>International Journal of Heat and Mass Transfer >Tuning capillary penetration in porous media: Combining geometrical and evaporation effects
【24h】

Tuning capillary penetration in porous media: Combining geometrical and evaporation effects

机译:调整毛细管在多孔介质中的渗透:结合几何和蒸发效应

获取原文
获取原文并翻译 | 示例
           

摘要

Capillary penetration of liquids in porous media is of great importance in many applications and the ability to tune such penetration processes is increasingly sought after. In general, liquid penetration can be retarded or restricted by the evaporation of volatile liquid at the surface of the porous media. Moreover, when capillary penetration occurs in a porous layer with non-uniform cross section, the penetration process can be accelerated or impeded by adjusting the section geometry. In this work, on the basis of Darcy's Law and mass conservation, a theoretical model of capillary penetration combining evaporation effects in two-dimensional homogeneous porous media of varying cross-section is developed and further examined by numerical simulations. The effects of sample geometry and liquid evaporation on capillary penetration are quantitatively analyzed. Results show that the penetration velocity is sensitive to the geometry of the porous layer, and can be tuned by varying the evaporation rate for a given geometry. Under given evaporation conditions, penetration is restricted to a limited region with a predictable boundary. Furthermore, we find that the inhibition of liquid penetration by evaporation can be offset by varying the geometry of the porous layer. The theoretical model is further extended to model the capillary flow in three-dimensional porous media. The interplay of geometry and evaporation during the capillary flow process in 3D conditions is also investigated. The results obtained can be used to facilitate the design of porous structures to achieve tunable capillary penetration for practical applications in various fields. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在许多应用中,液体在多孔介质中的毛细渗透非常重要,因此越来越需要调节这种渗透过程的能力。通常,液体渗透可以通过在多孔介质的表面处的挥发性液体的蒸发来阻止或限制。此外,当在具有不均匀横截面的多孔层中发生毛细管渗透时,可以通过调节截面几何形状来加速或阻止渗透过程。在这项工作中,在达西定律和质量守恒的基础上,建立了结合渗透作用在不同横截面的二维均质多孔介质中的蒸发作用的毛细管渗透理论模型,并通过数值模拟对其进行了进一步检验。定量分析了样品几何形状和液体蒸发对毛细管渗透的影响。结果表明,渗透速度对多孔层的几何形状敏感,可以通过改变给定几何形状的蒸发速率来调节渗透速度。在给定的蒸发条件下,渗透被限制在具有可预测边界的有限区域内。此外,我们发现通过改变多孔层的几何形状可以抵消蒸发对液体渗透的抑制。理论模型被进一步扩展以模拟三维多孔介质中的毛细流动。还研究了在3D条件下毛细管流动过程中几何形状和蒸发之间的相互作用。获得的结果可用于促进多孔结构的设计,以实现可调谐的毛细管渗透,以用于各种领域的实际应用。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号