首页> 外文期刊>International Journal of Heat and Mass Transfer >Boundary effects on flow oscillations in transient heat transfer of n-decane at supercritical pressure
【24h】

Boundary effects on flow oscillations in transient heat transfer of n-decane at supercritical pressure

机译:正癸烷在超临界压力下瞬态传热中流动振荡的边界效应

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical study has been conducted to analyze boundary effects, including different inlet boundary conditions and different inlet section lengths (distances from the inlet boundary to the heated section), on flow dynamics in transient supercritical-pressure heat transfer of n-decane in a circular tube. As the inlet boundary condition changes from a constant flow velocity to a constant stagnation pressure, the pressure oscillation frequency is nearly doubled, and the thermoacoustic wave is in the first longitudinal mode. The frequency of mass flow rate oscillation is essentially the same as that of the pressure wave. Different inlet boundary conditions exert no effect on the pressure wave amplitude but make strong influence on the amplitude of mass flow rate oscillation at the outlet of the heated section. As the inlet insulation section length increases under a constant inlet stagnation pressure, frequencies of both pressure and mass flow rate oscillations proportionally decrease, and the thermoacoustic waves remain in the first longitudinal mode. Different inlet section lengths appear to make only minor effect on the amplitudes of both pressure and mass flow rate oscillations at the outlet of the heated section, and the maximum amplitude in each wave is around 10% of its steady-state value. (C) 2018 Elsevier Ltd. All rights reserved.
机译:已经进行了数值研究,以分析正癸烷在圆环中瞬态超临界传热过程中流动动力学方面的边界效应,包括不同的入口边界条件和不同的入口段长度(从入口边界到加热段的距离)。管。当入口边界条件从恒定流速变为恒定停滞压力时,压力振荡频率几乎翻倍,并且热声波处于第一纵向模式。质量流率振荡的频率与压力波的频率基本相同。不同的入口边界条件对压力波幅值没有影响,但对加热部分出口处的质量流率振荡的幅值有很大影响。在恒定的入口停滞压力下,随着入口隔热段长度的增加,压力和质量流率振荡的频率均成比例降低,并且热声波保持在第一纵向模式。不同的入口段长度似乎仅对加热段出口处的压力和质量流率振荡的振幅产生很小的影响,并且每个波的最大振幅约为其稳态值的10%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号