首页> 外文期刊>International Journal of Heat and Mass Transfer >Gas transport behaviors in shale nanopores based on multiple mechanisms and macroscale modeling
【24h】

Gas transport behaviors in shale nanopores based on multiple mechanisms and macroscale modeling

机译:基于多种机理和宏观模型的页岩纳米孔中气体运移行为

获取原文
获取原文并翻译 | 示例
           

摘要

The combined action of multiple transport mechanisms and reservoir characteristics makes gas transport behaviors in nanoporous shale complicated. Accurate apparent gas permeability (AGP) characterization for gas transport in nanopores is crucially essential for macroscale modeling in shale gas reservoirs development. In this study, a new unified AGP model for gas transport in the organic and inorganic nanoporous shale (OM and IM) is presented, incorporating multiple mechanisms, such as real gas effect, viscous-slip flow, Knudsen diffusion, surface diffusion, stress dependence and especially the organic nanopores content. Besides, the effect of multilayer adsorption on gas transport is included. The model is validated by experimental and linearized Boltzmann results and compared with the published AGP models. After that, sensitivity analysis and the contribution of each mechanism to the total AGP are conducted. Moreover, a numerical model for the fractured well in shale based on the presented AGP model and discrete fracture model (DFM) is derived. The finite element method (FEM) is applied to solve the model and then influence factors of gas transport behaviors are discussed. The results show that different transport mechanisms exist in organic and inorganic nanopores respectively. The larger pore radius or pressure causes a smaller ratio of the AGP over the intrinsic permeability. Moreover, the contribution of surface diffusion to the total AGP is significantly influenced by the OM nanopores radius and surface diffusion coefficient. In addition, gas transport is governed by Knudsen diffusion in nanopores with a small radius and low pressure and is controlled by viscous flow under the large pore radius and high-pressure conditions. Then, the presented AGP model is introduced into the macroscale numerical model for a fractured well in shale. Larger hydraulic fracture half-length, OM nanopores content and matrix pore radius as well as smaller natural fracture spacing cause higher gas production. The study provides a new unified AGP model considering gas transport behaviors in nanopores and applies the AGP model to macroscale modeling.
机译:多种输运机制和储层特征的共同作用使得纳米多孔页岩中的气体输运行为变得复杂。在页岩气藏开发中进行宏观建模时,对纳米孔中的气体传输进行准确的表观气体渗透率(AGP)表征至关重要。在这项研究中,提出了一种新的统一的AGP模型,用于有机和无机纳米多孔页岩(OM和IM)中的气体运移,并结合了多种机制,例如真实气体效应,粘滑流,克努森扩散,表面扩散,应力依赖性尤其是有机纳米孔的含量。此外,还包括多层吸附对气体传输的影响。该模型已通过实验和线性化的Boltzmann结果验证,并与已发布的AGP模型进行了比较。之后,进行敏感性分析和每种机制对总AGP的贡献。此外,基于提出的AGP模型和离散裂缝模型(DFM),推导了页岩裂缝井的数值模型。应用有限元方法对模型进行求解,然后讨论了气体输运行为的影响因素。结果表明,有机和无机纳米孔中分别存在不同的传输机制。较大的孔半径或压力会导致AGP在固有渗透率上的比率较小。此外,表面扩散对总AGP的贡献受OM纳米孔半径和表面扩散系数的影响很大。另外,气体的传输受克努森扩散在小半径和低压的纳米孔中的控制,并且在大孔径和高压条件下受粘性流的控制。然后,将提出的AGP模型引入到页岩压裂井的宏观数值模型中。较大的水力压裂裂缝半长,OM纳米孔含量和基质孔隙半径以及较小的自然裂缝间距会导致更高的产气量。该研究提供了一种新的统一的AGP模型,该模型考虑了纳米孔中的气体传输行为,并将AGP模型应用于宏观模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号