首页> 外文期刊>International Journal of Heat and Mass Transfer >Large-eddy simulation of jet impingement heat transfer using a lobed nozzle
【24h】

Large-eddy simulation of jet impingement heat transfer using a lobed nozzle

机译:大叶喷嘴射流传热的大涡模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The jet impingement heat transfer issuing from a lobed nozzle constructed using three circular orifices at a Reynolds number (Re) of 10,000 is investigated intensively with large-eddy simulation (LES). A comparative view was obtained for three nozzle configurations with different ratios of the orifice center offset (a) to the orifice radius (b) (i.e.,a/b = 0, 0.8, and 1.15) at two nozzle-to-wall distances (H/De = 2 and 4). A constant equivalent diameterDeis fixed for all of the configurations to ensure the nozzles’ constant cross-section area. Good agreement of the LES data with the results obtained with temperature-sensitive paint (TSP) and particle image velocimetry (PIV) is established for the azimuthal-averaged Nusselt number on the impingement wall and the velocity distributions in the wall-jet and impingement zones, respectively. For all three nozzle configurations atH/De = 2, the LES results delineate two heat removal mechanisms of the impinging jet. Near the second-peak circle, the heat transfer is enhanced by the secondary vortices near the wall, whereas beyond the second-peak circle the instantaneous flow impingement onto the wall plays a significant role in heat transfer enhancement. The secondary vortices and instantaneous flow impingement are strengthened significantly in the configuration witha/b = 0.8 atH/De = 2, giving rise to a substantial increase in the Nusselt number in the region 1 < r/De < 4. For the three configurations atH/De = 4, the instantaneous flow impingement is the main mechanism for heat transfer enhancement in the regionr/De < 0.5, whereas the increase ina/bresults in frequent activation of the intense flow impingement along with high turbulent kinetic energy, yielding better heat transfer on the heated wall.
机译:使用大涡模拟(LES)深入研究了由使用三个圆形孔构造的,有雷诺数(Re)为10,000的有瓣喷嘴产生的射流冲击传热。获得了三种喷嘴构造的比较视图,在两个喷嘴到壁的距离(即, H / De = 2和4)。所有配置都固定有一个恒定的等效直径De,以确保喷嘴的横截面积恒定。建立了LES数据与热敏涂料(TSP)和颗粒图像测速仪(PIV)的结果的良好一致性,以求出撞击壁上方位平均Nusselt数以及壁喷射和撞击区域中的速度分布, 分别。对于H / De = 2的所有三个喷嘴配置,LES结果描述了撞击射流的两种排热机理。在第二峰圆附近,壁附近的次级涡流增强了传热,而在第二峰圆以外,瞬时流撞击壁上在增强传热中起着重要作用。在H / De = 2处a / b = 0.8的配置中,次级涡旋和瞬时流动冲击得到了显着增强,在区域1

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号