首页> 外文期刊>International Journal of Heat and Mass Transfer >Analysis of single phase, discrete and mixture models, in predicting nanofluid transport
【24h】

Analysis of single phase, discrete and mixture models, in predicting nanofluid transport

机译:分析单相,离散和混合物模型,以预测纳米流体的传输

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical investigation of developing forced convective heat transfer and pressure drop of nanofluid flow inside a tube subject to a constant wall heat flux boundary condition is presented. The single-phase homogenous and two different two-phase models: Lagrangian-Eulerian model or (discrete phase model) and mixture model are utilized with both constant and temperature dependent properties to further investigate and clarify the differences and evaluate the assumption of the single-phase model. The obtained results were subjected to an intensive comparison with the available experimental data and numerical works in the literature. The influence of some important parameters such as, source and sink terms, injected particle mass flow rate, slip velocity, particle forces, Reynolds number, constant or temperature dependent properties and particle concentration on the heat transfer and flow characteristics of nanofluids were determined and discussed in detail. It was observed that the two phase Lagrangian-Eulerian model (DPM) overestimated the heat transfer coefficient values and the results from the mixture model displayed an unrealistic increase in heat transfer particularly for high particle volume fraction. The proposed single phase approach revealed a very good agreement with the experimental data and the maximum difference in the average heat transfer coefficient between the single-phase and DPM was found to be 5.9% considering variable properties. The results also revealed that increasing the injected particle mass flow rate does not have a significant effect on the heat transfer coefficient values and that the particles move with the same velocity of the fluid. Furthermore, the heat transfer coefficient increases as the particle volume fraction and Reynolds number increases, but it is accompanied by a higher pressure drop and wall shear stress values. DPM model provides a reasonable prediction for the thermal behavior of the nanofluids transport, the single-phase approach with temperature dependent viscosity and thermal conductivity is an accurate way to analyze the transport of nanofluids while requiring less CPU usage and memory for predicting the enhancement in nanofluids convective heat transfer.
机译:给出了在恒定壁热通量边界条件下发展的强制对流换热和管内纳米流体流压降的数值研究。单相均质和两种不同的两相模型:Lagrangian-Eulerian模型或(离散相模型)和混合模型具有恒定和温度相关的特性,可以进一步研究和澄清差异并评估单相模型的假设。相模型。将获得的结果与文献中的可用实验数据和数值工作进行了深入的比较。确定并讨论了一些重要的参数,如源和汇项,注入的粒子质量流速,滑移速度,粒子力,雷诺数,常数或温度相关的特性以及粒子浓度对纳米流体的传热和流动特性的影响。详细。观察到两相拉格朗日-欧拉模型(DPM)高估了传热系数值,混合模型的结果显示,尤其对于高颗粒体积分数,传热增加不切实际。所提出的单相方法显示出与实验数据非常吻合,考虑到可变特性,单相和DPM之间的平均传热系数的最大差异为5.9%。结果还表明,增加注入的颗粒质量流速不会对传热系数值产生显着影响,并且颗粒以相同的流体速度运动。此外,传热系数随着颗粒体积分数和雷诺数的增加而增加,但是伴随着更高的压降和壁切应力值。 DPM模型提供了对纳米流体传输的热行为的合理预测,具有取决于温度的粘度和导热系数的单相方法是分析纳米流体传输的准确方法,同时需要较少的CPU使用量和内存来预测纳米流体的增强对流换热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号