...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Apparent permeability for liquid transport in nanopores of shale reservoirs: Coupling flow enhancement and near wall flow
【24h】

Apparent permeability for liquid transport in nanopores of shale reservoirs: Coupling flow enhancement and near wall flow

机译:页岩储集层纳米孔中液体传输的表观渗透率:耦合流增强和近壁流

获取原文
获取原文并翻译 | 示例
           

摘要

Multiple mechanisms of oil transport in inorganic and organic nanopores of shale oil reservoirs are still unclear and possibly more complex than those of gas transport in nanoporous media, due to differences of molecules free path and fluid-solid molecular interactions. The accurate apparent permeability model considering oil transport mechanisms and different pore types is important for macroscale modeling in shale oil reservoirs development. Based on studies of molecular dynamics simulations (MDS), liquid flow through carbon nanotubes (CNTs) and theoretical analysis, a unified apparent permeability model of liquid hydrocarbon flow in the shale is derived coupling different transport mechanisms in inorganic and organic nanopores. The model of oil-wet organic nanopores considers liquid-solid adsorption, while the model of water-wet inorganic nanopores incorporates near wall flow and velocity slip. We then introduce complicated structural parameters including the tortuosity, porosity and total organic carbon (TOC) to develop models from nanotubes into porous media. After that, the proposed model is validated by MDS and experimental results, and the total apparent liquid permeability (ALP) as well as contributions of different mechanisms are studied. The results indicate that, flow enhancement should be considered in the characterization of oil transport in nanopores, and the velocity of oil in inorganic nanopores much faster than that in organic nanopores in this work. For pore radii under 10 nm, the total ALP is much larger than intrinsic permeability, and adsorption effect as well as velocity slip in organic matter (OM) and inorganic matter (IM) influence the total ALP slightly when the pore radius is larger than 100 nm. In addition, the greater slip length in IM results in greater contributions of oil transport in IM to the total ALP if slip length is less than 10 nm. Moreover, the ratio of the total ALP to intrinsic permeability decreases as TOC increases when TOC is larger than 20%. This work focuses on enriching the theoretical research of oil transport in nanopores and provides a unified ALP model for macroscale modeling study in the shale reservoirs development.
机译:在页岩油储层的无机和有机纳米孔中,油的多种运移机制仍不清楚,并且由于分子自由程和液固分子相互作用的差异,可能比在纳米多孔介质中的气体运移更为复杂。考虑页岩油藏开发的宏观模型,考虑到输油机理和不同孔隙类型的精确表观渗透率模型是重要的。基于分子动力学模拟(MDS)的研究,液体通过碳纳米管(CNT)的流动以及理论分析,得出了页岩中液态烃流动的统一表观渗透率模型,并结合了无机和有机纳米孔中的不同传输机理。油湿有机纳米孔的模型考虑了液固吸附,而水湿无机纳米孔的模型考虑了近壁流和速度滑移。然后,我们介绍了复杂的结构参数,包括曲折度,孔隙率和总有机碳(TOC),以将模型从纳米管开发成多孔介质。然后,通过MDS和实验结果验证了该模型的有效性,并研究了总表观液体渗透率(ALP)以及不同机理的贡献。结果表明,在表征纳米孔中的油传输时应考虑流动增强,并且在这项工作中,无机纳米孔中的油速度要比有机纳米孔中的油速度快得多。对于10 nm以下的孔半径,总ALP远大于固有渗透率,并且当孔半径大于100时,吸附效果以及有机物(OM)和无机物(IM)的速度滑移会对总ALP产生轻微影响纳米此外,如果滑移长度小于10 nm,则IM中较大的滑移长度会导致IM中的油传输对总ALP的贡献更大。此外,当TOC大于20%时,总ALP与固有磁导率之比随着TOC的增加而降低。这项工作着重于丰富纳米孔输油的理论研究,并为页岩油藏开发中的宏观模型研究提供了统一的ALP模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号