首页> 外文期刊>International Journal of Heat and Mass Transfer >The influence of fin structure and fin density on the condensation heat transfer of R134a on single finned tubes and in tube bundles
【24h】

The influence of fin structure and fin density on the condensation heat transfer of R134a on single finned tubes and in tube bundles

机译:翅片结构和翅片密度对单翅片管和管束中R134a冷凝水传热的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The influence of fin structure and density on the condensation heat transfer of refrigerant 1,1,1,2-tetrafluoroethane (R134a) is investigated on single finned tubes and in corresponding bundles. Experiments have been performed on standard and enhanced finned tubes with 39, 48, and 56 fins per inch (FPI) and different fin heights. The enhanced finned tubes are based on the standard ones, and are characterized by a non-uniform fin structure. The condensation heat transfer coefficient (HTC) is determined for single tubes as well as for each row of the tube bundles and compared with predictions from analytical models. In the single tube measurements, the enhanced finned tubes showed distinctly higher HTCs than the standard finned tubes. Different condensation flow modes have been observed during the tube bundle experiments where the additional structures on the fin flank of the enhanced finned tubes promote sheet mode condensation. It has been demonstrated that the standard finned tubes show a lower decrease in the condensation HTC with increasing tube row number in the bundle than the enhanced finned tubes. Among the standard finned tubes, the one with 48 FPI and larger fin height exhibits the highest HTCs for single tube and tube bundle experiments. The increase in the fin height seems to delay the formation of sheet mode condensation and thus to increase the condensation HTC. Among the enhanced finned tubes, the tube with 39 FPI yields the highest HTCs for both single tube and tube bundle measurements. Low fin density and large fin height obviously tend to keep the insulating effect of retained condensate in the fin channels low.
机译:研究了翅片结构和密度对单翅片管和相应束中制冷剂1,1,1,2-四氟乙烷(R134a)冷凝水传热的影响。已经对每英寸39、48和56鳍片(FPI)和不同鳍片高度的标准鳍片管和增强鳍片管进行了实验。增强型翅片管是基于标准翅片管的,其特征在于翅片结构不均匀。确定单个管以及管束的每一行的冷凝传热系数(HTC),并将其与分析模型的预测值进行比较。在单管测量中,增强型翅片管的HTC明显高于标准翅片管。在管束实验过程中观察到了不同的冷凝流模式,其中增强翅片管的翅片侧面的附加结构促进了片状模式的冷凝。已经证明,标准翅片管与增强翅片管相比,随着束中管排数的增加,冷凝HTC的降低程度更低。在标准翅片管中,具有48 FPI和较大翅片高度的翅片管在单管和管束实验中显示出最高的HTC。翅片高度的增加似乎延迟了薄板模式冷凝的形成,并因此增加了冷凝HTC。在增强型翅片管中,对于单管和管束测量,具有39 FPI的管产生的HTC最高。低的翅片密度和较大的翅片高度显然倾向于使翅片通道中的残留冷凝物的隔热效果保持较低。

著录项

  • 来源
  • 作者单位

    Department of Chemical and Biological Engineering, Institute of Engineering Thermodynamics (LTT), University of Erlangen-Nuremberg, Am Weichselgarten 8, D-91058 Erlangen, Germany,College of Engineering, University of Wasit, Al Kut, Wasit, Iraq;

    Department of Chemical and Biological Engineering, Institute of Engineering Thermodynamics (LTT), University of Erlangen-Nuremberg, Am Weichselgarten 8, D-91058 Erlangen, Germany;

    Wieland-Werke AG, Graf-Arco-Strasse 36, D-89079 Ulm, Germany;

    Department of Chemical and Biological Engineering, Institute of Engineering Thermodynamics (LTT), University of Erlangen-Nuremberg, Am Weichselgarten 8, D-91058 Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies (SAOT), University of Erlangen-Nuremberg, Paul-Gordan-Strasse 6, D-91052 Erlangen, Germany;

    Department of Chemical and Biological Engineering, Institute of Engineering Thermodynamics (LTT), University of Erlangen-Nuremberg, Am Weichselgarten 8, D-91058 Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies (SAOT), University of Erlangen-Nuremberg, Paul-Gordan-Strasse 6, D-91052 Erlangen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bundle effect; Condensation; Fin height; Fin pitch; Fin structure; R134a;

    机译:捆绑效应;缩合;翅片高度;鳍间距;鳍结构;R134a;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号