首页> 外文期刊>International Journal of Heat and Mass Transfer >Aerogel blankets: From mathematical modeling to material characterization and experimental analysis
【24h】

Aerogel blankets: From mathematical modeling to material characterization and experimental analysis

机译:气凝胶毯:从数学建模到材料表征和实验分析

获取原文
获取原文并翻译 | 示例
           

摘要

One of the most feasible solutions for reducing the global energy consumption and associated CO_2 emissions, is through usage of more efficient insulation systems in buildings and refrigeration units. Commercialization of high-performance thermal insulation will significantly contribute to environmentally sustainable future development. Aerogel composites provide superior thermal resistance and enable new design approaches for high performance insulation systems. This paper presents a theoretical and experimental study on the effective thermal conductivity of aerogel composites. The analytical model represents aerogel composites with a unit cell consisting of a cylindrical fiber surrounded by a packed bed of aerogel particles. The model accounts for various heat transfer mechanisms, namely conduction in the solid, gas conduction, and radiation. The properties and microstructure of two types of aerogel composites (Cryogel~® Z and ThermalWrap™) were studied with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and Fourier transform infrared spectroscopy (FTIR). The apparent thermal conductivity of the samples of aerogel blanket were measured using heat flow meter (HFM) at mean temperature ranging from -20 ℃ to 80 ℃ and the results polished thorough two-thickness method to de-convolute the effect of thermal contact resistance (TCR), between the sample and HFM hot and cold plates, from the apparent thermal conductivity values. The effective thermal conductivity results were found to increase from 0.0135 to 0.0175 W m~(-1) K~(-1) for Cryogel~® Z and 0.0188 to 0.0271 Wm~(-1) K~(-1) for ThermalWrap™ at mentioned temperature range. The analytically predicted variation in the effective thermal conductivity as a function of temperature agreed well with the experimental data. Using the proposed model, parametric studies were performed to investigate the effect of blanket porosity and fiber thermal conductivity on the effective thermal conductivity of aerogel composites.
机译:减少全球能源消耗和相关CO_2排放的最可行解决方案之一是在建筑物和制冷装置中使用更有效的保温系统。高性能隔热材料的商业化将极大地促进环境可持续发展。气凝胶复合材料具有出色的耐热性,并为高性能隔热系统提供了新的设计方法。本文对气凝胶复合材料的有效导热系数进行了理论和实验研究。该分析模型表示气凝胶复合材料,其具有由圆柱形纤维和气凝胶颗粒填充床围绕的晶胞组成的晶胞。该模型考虑了各种传热机制,即固体中的传导,气体中的传导和辐射。用扫描电子显微镜(SEM),压汞法(MIP)和傅里叶变换红外光谱(FTIR)研究了两种气凝胶复合材料(Cryogel®Z和ThermalWrap™)的性能和微观结构。使用热流量计(HFM)在平均温度为-20℃至80℃的条件下测量气凝胶毯样品的表观导热系数,并将结果抛光两次厚度法以消除热接触电阻的影响。 TCR),从表观热导率值开始,在样品与HFM热板和冷板之间。发现Cryogel®Z的有效导热系数结果从0.0135 W m〜(-1)K〜(-1)增加,而ThermalWrap™则从0.0188 W m〜(-1)K〜(-1)增加。在上述温度范围内。解析地预测的有效导热系数随温度的变化与实验数据非常吻合。使用提出的模型,进行了参数研究,以研究橡皮布孔隙率和纤维导热率对气凝胶复合材料有效导热率的影响。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2016年第2期|1124-1131|共8页
  • 作者单位

    Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada;

    Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada;

    Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada;

    Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Insulation material; Aerogel blanket; Effective thermal conductivity; Heat transfer; Heat flow meter;

    机译:绝缘材料;气凝胶毯;有效导热系数;传播热量;热流量计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号