首页> 外文期刊>International Journal of Heat and Mass Transfer >Submerged jet impingement cooling using nanostructured plates
【24h】

Submerged jet impingement cooling using nanostructured plates

机译:使用纳米结构板的浸没式射流冲击冷却

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the results of a series of heat transfer experiments conducted on a compact electronics cooling device based on single and two phase jet impingement technique are reported. Deionized and degassed water is propelled into four microchannels. The generated jet impingement is targeted through these channels towards the surface of two nanostructured plates with different surface morphologies placed inside a liquid pool filled with deionized-water. These nanostructured plates are composed of copper nanorods grown on top of a silicon wafer substrate of thickness 350 μm coated with a 50 nm thick copper thin film layer (i.e. Cu-nanorod/Cu-film/Silicon-wafer). Nanorods were grow_N using the sputter glancing angle deposition (GLAD) technique. First type of nanostructured plates incorporates ~600 nm long vertically aligned copper nanorod arrays. The second type incorporates ~600 nm long tilted copper nanorod arrays. Heat removal characteristics induced through jet impingement are investigated using the nanostructured plates and compared to the results obtained from a plain surface plate of copper thin film coated on silicon wafer surface. Surface temperatures are recorded by a data acquisition system with four thermocouples integrated on the surface at various prescribed locations. Volumetric flow rate and heat flux values are varied between 107.5-181.5 ml/min and 1-40 W/cm~2. A single phase average heat transfer enhancement of 22.4% and a two phase average heat transfer enhancement of 85.3% has been realized using the nanostructured plate with vertical nanorods compared to flat plate. This enhancement is attributed to the increased heat transfer surface area and the single crystal property of the vertical Cu nanorods. On the other hand, nanostructured plate with tilted nanorods has shown poorer heat transfer performance compared to both the nanostructured plate with vertical nanorods and plain surface plate in the performed experiments. The lower heat transfer rate of the tilted Cu nanorods is believed to be due to the decreased supply of liquid jets to the base of the plate caused by their tilted orientation and closely spaced dense array structure. This leads to formation of air gaps that ultimately become trapped among the tilted nanorods, which results in reduced heat transfer surface area and increased resistance to heat transfer.
机译:本文报道了在基于单相和两相射流冲击技术的紧凑型电子冷却装置上进行的一系列传热实验的结果。去离子和脱气的水被推进到四个微通道中。通过这些通道将产生的射流撞击对准两个具有不同表面形态的纳米结构板的表面,该两个纳米结构板放置在装满去离子水的液体池中。这些纳米结构板由生长在厚度为350μm的硅片基板顶部的铜纳米棒组成,该硅片基板上涂覆了50 nm厚的铜薄膜层(即Cu-nanorod / Cu-film / Silicon-wafer)。使用溅射掠角沉积(GLAD)技术将nanorods成长。第一类纳米结构板包含约600 nm长的垂直排列的铜纳米棒阵列。第二种类型包含〜600 nm长的倾斜铜纳米棒阵列。使用纳米结构板研究了通过射流撞击引起的散热特性,并将其与从涂覆在硅片表面的铜薄膜的平整表面板得到的结果进行了比较。表面温度由数据采集系统记录,该数据采集系统在表面上各个指定位置集成了四个热电偶。体积流量和热通量值在107.5-181.5 ml / min和1-40 W / cm〜2之间变化。与平板相比,使用具有垂直纳米棒的纳米结构板已经实现了22.4%的单相平均传热增强和85.3%的两相平均传热增强。这种增强归因于增加的传热表面积和垂直Cu纳米棒的单晶特性。另一方面,在进行的实验中,与具有垂直纳米棒的纳米结构板和平坦表面板相比,具有倾斜的纳米棒的纳米结构板显示出较差的传热性能。倾斜的铜纳米棒的较低的传热速率被认为是由于它们的倾斜取向和紧密间隔的致密阵列结构引起的向板的底部的液体射流供应的减少。这导致形成气隙,该气隙最终被困在倾斜的纳米棒中,这导致减小的传热表面积和增加的传热阻力。

著录项

  • 来源
  • 作者单位

    Mechatmnics Engineering Program, Sabanct University, Tuzla, 34956 Istanbul, Turkey;

    Mechatmnics Engineering Program, Sabanct University, Tuzla, 34956 Istanbul, Turkey;

    Mechatmnics Engineering Program, Sabanct University, Tuzla, 34956 Istanbul, Turkey;

    Department of Applied Science, Engineering Science and Systems, University of Arkansas at Little Rock, Little Rock, AR 72204, USA;

    Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA;

    Sabancoi University, Tuzla, 34956 Istanbul, Turkey;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Jet impingement; Nanostructured plate; Convective; Heat transfer; Nanorods;

    机译:射流冲击;纳米结构板;对流传播热量;纳米棒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号