首页> 外文期刊>International Journal of Heat and Mass Transfer >Rewetting and maximum surface heat flux during quenching of hot surface by round water jet impingement
【24h】

Rewetting and maximum surface heat flux during quenching of hot surface by round water jet impingement

机译:圆水射流冲击在热表面淬火过程中的再润湿和最大表面热通量

获取原文
获取原文并翻译 | 示例
           

摘要

The transient cooling of hot stainless steel surface of 0.25 mm thickness is done with round water jet impingement. Initially, the surface was heated up to the temperature of 800 °C before the water was injected through straight tube type nozzle of 2.5 mm diameter and 250 mm length. During impingement cooling, the surface temperature was measured up to 12 mm radial distance away from the stagnation point. The jet exit to surface spacing, z/d, and jet Reynolds number. Re, varied in the range of 4-16 and 5000-24,000 respectively. The surface rewetting and transient heat flux of the test-surface was studied for these operating parameters.During impingement cooling process the initial rewetting occurred at stagnation region with the lowest wetting delay period. In fact, the rewetting temperature, rewetting velocity and the maximum heat flux reduced for extreme spatial location. However, the wetting delay increased significantly for the locations away from the stagnation point. The surface rewetting and transient heat flux were increased with the rise in jet Reynolds number, resulting in the enhancement in rewetting temperature, rewetting velocity and reduced wetting delay. The maximum heat flux was obtained for 4-6 mm radial location. The effect of jet exit to surface spacing on the rewetting parameters is found to be marginal. A correlation has been developed which predicted the maximum heat flux within an error band of ±10%.
机译:0.25 mm厚的热不锈钢表面的瞬态冷却是通过圆形喷水冲击进行的。最初,在将水通过直径为2.5 mm,长度为250 mm的直管型喷嘴注入水之前,先将表面加热至800°C。在冲击冷却期间,在距停滞点最远12 mm的径向距离处测量了表面温度。射流出口至表面间距,z / d和射流雷诺数。 Re,分别在4-16和5000-24,000之间变化。研究了这些工作参数的表面再润湿和测试表面的瞬态热通量。在冲击冷却过程中,初始再润湿发生在停滞区域,润湿延迟时间最短。实际上,对于极端的空间位置,再润湿温度,再润湿速度和最大热通量降低了。然而,对于远离停滞点的位置,润湿延迟显着增加。随着喷射雷诺数的增加,表面的再润湿和瞬态热通量增加,从而导致再润湿温度,再润湿速度的提高和润湿延迟的减少。对于4-6 mm的径向位置可获得最大热通量。发现射流出口对表面间距对再润湿参数的影响很小。已经开发出一种相关性,该相关性预测了在±10%的误差带内的最大热通量。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2012年第18期|p.4772-4782|共11页
  • 作者单位

    Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 267447, Uttrakhand, India;

    Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 267447, Uttrakhand, India;

    Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 267447, Uttrakhand, India;

    Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 267447, Uttrakhand, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    jet impingement; stagnation; rewetting; wetting delay; maximum heat flux;

    机译:射流冲击;停滞;再润湿;润湿延迟;最大热通量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号