首页> 外文期刊>International Journal of Heat and Mass Transfer >Coiled-tube heat exchanger for High-Pressure Metal Hydride hydrogen storage systems - Part 1. Experimental study
【24h】

Coiled-tube heat exchanger for High-Pressure Metal Hydride hydrogen storage systems - Part 1. Experimental study

机译:高压金属氢化物储氢系统用盘管式换热器-第1部分。实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

This two-part study explores the development and thermal performance of a coiled-tube heat exchanger for hydrogen fuel cell storage systems utilizing High-Pressure Metal Hydride (HPMH). The primary purpose of this heat exchanger is to tackle the large amounts of heat released from the exothermic hydriding reaction that occurs when the hydrogen is charged into the storage vessel and is absorbed by the HPMH. The performance of heat exchanger was tested using 4 kg of Tii.iCrMn at pressures up to 280 bar. Tests were performed to assess the influence of different operating conditions on the effectiveness of the heat exchanger at removing the heat in a practical fill time (time required to complete 90% of the hydriding reaction). It is shown that distance of metal hydride particles from the coolant tube has the most dominant influence on hydriding rate, with particles closer to the tube completing their hydriding reaction sooner. Faster fill times were achieved by reducing coolant temperature and to a lesser extent by increasing pressurization rate. By comparing tests with and without coolant flow, it is shown that the heat exchanger reduces fill time by 75% while occupying only 7% of the storage pressure vessel volume. The second part of this study will present a 3D computational heat transfer model of the storage vessel and heat exchanger, and compare the model predictions to the experimental data.
机译:这项由两部分组成的研究探讨了使用高压金属氢化物(HPMH)的氢燃料电池存储系统盘管式热交换器的开发和热性能。该热交换器的主要目的是解决因放热氢化反应释放的大量热量,放热氢化反应是在将氢气装入存储容器并被HPMH吸收时发生的。使用4 kg Tii.iCrMn在最高280 bar的压力下测试了热交换器的性能。进行测试以评估不同操作条件对热交换器在实​​际填充时间内(完成90%的氢化反应所需的时间)排热的效率的影响。结果表明,金属氢化物颗粒与冷却剂管之间的距离对氢化速率的影响最大,靠近金属管的颗粒会更快地完成其氢化反应。通过降低冷却液温度可以缩短灌装时间,而通过提高增压速度可以减少灌装时间。通过比较有冷却剂流和无冷却剂流的测试,表明热交换器将填充时间减少了75%,而仅占存储压力容器体积的7%。本研究的第二部分将介绍存储容器和热交换器的3D计算传热模型,并将模型预测与实验数据进行比较。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2012年第6期|p.1782-1795|共14页
  • 作者

    Milan Visaria; Issam Mudawar;

  • 作者单位

    Hydrogen Systems Laboratory (HSL) and Boiling and Two-Phase Flow Laboratory (BTPFL), School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States;

    Hydrogen Systems Laboratory (HSL) and Boiling and Two-Phase Flow Laboratory (BTPFL), School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fuel cells; hydrogen storage; heat exchangers;

    机译:燃料电池;储氢换热器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号