首页> 外文期刊>International Journal of Heat and Mass Transfer >Assessment of an active-cooling micro-channel heat sink device, using electro-osmotic flow
【24h】

Assessment of an active-cooling micro-channel heat sink device, using electro-osmotic flow

机译:使用电渗流评估主动冷却微通道散热器设备

获取原文
获取原文并翻译 | 示例
           

摘要

Non-uniform heat flux generated by microchips causes "hot spots" in very small areas on the microchip surface. These hot spots are generated by the logic blocks in the microchip bay; however, memory blocks generate lower heat flux on contrast. The goal of this research is to design, fabricate, and test an active cooling micro-channel heat sink device that can operate under atmospheric pressure while achieving high-heat dissipation rate with a reduced chip-backside volume, particularly for spot cooling applications. An experimental setup was assembled and electro-osmotic flow (EOF) was used thus eliminating high pressure pumping system. A flow rate of 82 μL/min was achieved at 400 V of applied EOF voltage. An increase in the cooling fluid (buffer) temperature of 9.6 ℃, 29.9 ℃, 54.3 ℃, and 80.1 ℃ was achieved for 0.4 W, 1.2 W, 2.1 W, and 4 W of heating powers, respectively. The substrate temperature at the middle of the microchannel was below 80.5 ℃ for all input power values. The maximum increase in the cooling fluid temperature due to the joule heating was 4.5 ℃ for 400 V of applied EOF voltage. Numerical calculations of temperatures and flow were conducted and the results were compared to experimental data. Nusselt number (Nu) for the 4 W case reached a maximum of 5.48 at the channel entrance and decreased to reach 4.56 for the rest of the channel. Nu number for EOF was about 10% higher when compared to the pressure driven flow. It was found that using a shorter channel length and an EOF voltage in the range of 400-600 V allows application of a heat flux in the order of 10~4 W/m~2, applicable to spot cooling. For elevated voltages, the velocity due to EOF increased, leading to an increase in total heat transfer for a fixed duration of time; however, the joule heating also got elevated with increase in voltage.
机译:由微芯片产生的不均匀的热通量在微芯片表面上的非常小的区域中引起“热点”。这些热点是由微芯片托架中的逻辑模块产生的;但是,存储块产生的热通量却较低。这项研究的目的是设计,制造和测试有源冷却微通道散热器器件,该器件可以在大气压下运行,同时以减小的芯片背面体积实现高散热率,特别是在点冷却应用中。组装了一个实验装置,并使用了电渗流(EOF),从而省去了高压泵系统。在施加的EOF电压为400 V时达到82μL/ min的流速。对于0.4 W,1.2 W,2.1 W和4 W的加热功率,冷却液(缓冲液)温度分别提高了9.6℃,29.9℃,54.3℃和80.1℃。对于所有输入功率值,微通道中间的基板温度均低于80.5℃。对于400 V施加的EOF电压,由于焦耳加热而导致的冷却液温度的最大增加为4.5℃。进行了温度和流量的数值计算,并将结果与​​实验数据进行了比较。 4 W机箱的Nusselt数(Nu)在通道入口处达到最大值5.48,而在其余通道中减小到4.56。与压力驱动流相比,EOF的Nu值高约10%。已经发现,使用较短的沟道长度和400-600V范围内的EOF电压允许施加大约10-4W / m-2的热通量,适用于点冷却。对于升高的电压,由于EOF引起的速度增加,导致固定时间内的总传热增加。但是,焦耳热也随着电压的升高而升高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号