首页> 外文期刊>International Journal of Heat and Mass Transfer >Simulation of micro-scale interaction between ice and biological cells
【24h】

Simulation of micro-scale interaction between ice and biological cells

机译:冰与生物细胞之间微观相互作用的模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents numerical simulations of the response of a biological cell during freexing. The cell is modeled as an aqueous salt solution surrounded by a semi-permeable membrane. The concentration and temperature fields both inside and outside a single cell are computed taking into account heat transfer, mass diffusion, membrane transport, and evolution of the solidification front. The external ice front is computed for both stable and unstable growth modes. It is shown that for the particular geometry chosen in this study, the instabilities on the front and the diffusional transport have only modest effects on the cell response. For the cooling conditions, solute and cell property parameters used, the low Peclet regime applies. The computational results are therefore validated against the conventional membrane-limited transport (Mazur) model. Good agreement of the simulation results with the Mazur model are obtained for a wide range of cooling rates and membrane permeabilities. A spatially non-isothermal situation is also considered and shown to yield significant differences in the cell response in comparison to the isothermal case.
机译:本文提出了冻结过程中生物细胞响应的数值模拟。将该池建模为被半透膜包围的盐水溶液。计算单个单元内部和外部的浓度和温度场时要考虑传热,质量扩散,膜传输和凝固前沿的演变。计算稳定和不稳定生长模式的外部冰锋。结果表明,对于本研究中选择的特定几何形状,前部的不稳定性和扩散传输对细胞响应的影响很小。对于冷却条件,所使用的溶质和电池性能参数,适用低Peclet模式。因此,针对常规的膜限制运输(Mazur)模型验证了计算结果。对于广泛的冷却速率和膜渗透性,仿真结果与Mazur模型具有很好的一致性。与等温情况相比,还考虑了在空间上非等温的情况,并显示这种情况在电池响应方面产生了显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号