...
首页> 外文期刊>International journal of hydrogen energy >Optimization of process parameters using response surface methodology (RSM) for power generation via electrooxidation of glycerol in T-Shaped air breathing microfluidic fuel cell (MFC)
【24h】

Optimization of process parameters using response surface methodology (RSM) for power generation via electrooxidation of glycerol in T-Shaped air breathing microfluidic fuel cell (MFC)

机译:利用响应面法(RSM)对工艺参数的优化,用于通过甘油在T形空气呼吸微流体燃料电池(MFC)中的电氧化产生的发电

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The present work focuses on the optimization of operating parameters using Box Behnken design (BBD) in RSM to obtain maximum power density from a glycerol based air-breathing T-shaped MFC. The major parameters influencing the experiment for enhancing the cell performance in MFC are glycerol/fuel concentration, anode electrolyte/KOH concentration, anode electrocatalyst loading and cathode electrolyte/KOH concentration. The ambient oxygen is used as the oxidant. The acetylene black carbon (C-AB) supported laboratory synthesized electrocatalyst Pd-Pt (16:4)/C-AB is used as anode electrocatalyst and commercial Pt (40 wt%)/C-HSA as the cathode electrocatalyst. The quadratic model predicts the appropriate operating conditions to achieve highest power density from the laboratory designed T-shaped MFC. The p-value of less than 0.0001 and F-value of greater than 1 i.e., 26.32 indicate that the model is significant. The optimum conditions predicted by the RSM model were glycerol concentration of 1.07 M, anode electrolyte concentration of 1.62 M anode electrocatalyst loading of 1.12 mg/cm(2) and cathode electrolyte concentration of 0.69 M. The negligible deviation of only 1.07% between actual/experimental power density (2.76 mW/cm(2)) and predicted power density (2.79 mW/cm(2)) was recorded. This model reasonably predicts the optimum conditions using Pd-Pt (16:4)/C-AB electrocatalyst to obtain maximum power density from glycerol based MFC. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:目前的工作侧重于使用RSM中的盒Behnken设计(BBD)优化操作参数,以获得来自基于甘油的空气呼吸T形MFC的最大功率密度。影响MFC中增强电池性能的主要参数是甘油/燃料浓度,阳极电解质/ KOH浓度,阳极电催化剂负载和阴极电解质/ KOH浓度。环境氧用作氧化剂。乙炔黑碳(C-AB)支持的实验室合成电催化剂PD-Pt(16:4)/ C-AB用作阳极电催化剂和商业Pt(40wt%)/ c-Hsa作为阴极电催化剂。二次模型预测了从实验室设计的T形MFC实现最高功率密度的适当操作条件。 P值小于0.0001和F值大于1即,26.32表示该模型是显着的。 RSM模型预测的最佳条件是甘油浓度为1.07米,阳极电解质浓度为1.62m阳极电解质荷载量1.12mg / cm(2),阴极电解质浓度为0.69米。实际/的可忽略偏差仅为1.07%实验功率密度(2.76mW / cm(2))和预测的功率密度(2.79mW / cm(2))被记录。该模型合理地预测使用PD-Pt(16:4)/ C-AB电催化剂的最佳条件,以获得来自基于甘油的MFC的最大功率密度。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号