首页> 外文期刊>International journal of mechanics and materials in design >Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field
【24h】

Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field

机译:磁通磁场下磁致伸缩智能层夹层的流体输送微管的颤动和分叉稳定性分析

获取原文
获取原文并翻译 | 示例
           

摘要

Fluid-conveying micro/Nano structures are key tools in MEMS and NEMS applications especially for drug delivery systems to attack a specific tumor like cancer cells. Vibrational characteristics of such tools play a crucial role in delivering efficient and reliable performance in various applications. As a result, vibration and instability control of such systems is of great importance. Vibration and instability response of magnetostrictive sandwich cantilever fluid-conveying micro-pipes is investigated in this paper utilizing smart magnetostrictive layers as actuators. Euler-Bernoulli beam model together with modified couple stress theory (MCST) are used to model the problem. As main properties of these smart layers, magnetic intensity effect, velocity feedback gain and thermal effects are taken into account in the modeling. The governing equation is extracted employing Hamilton's principle. Extended Galerkin procedure is applied to discretize the governing equation and obtain the eigenvalue problem which is solved straightforwardly to reach the eigenvalues. Afterwards, eigenvalue diagrams are studied to analyze the vibrational characteristics and possible instabilities (flutter and bifurcation) occurring in first three modes of the system. Throughout this analysis, the role of various intrinsic properties of the magnetostrictive layers on the critical flow velocity and frequency is studied in detail. The numerical results show a good ability for the used smart layers to control the instability of fluid-conveying micro-pipes. Therefore, these sandwich structures may be helpful for achieving a novel design for such systems.
机译:流体输送微/纳米结构是MEMS和NEMS应用中的关键工具,尤其用于药物递送系统,以攻击癌细胞等特异性肿瘤。这种工具的振动特性在各种应用中提供有效可靠的性能方面发挥着至关重要的作用。结果,这种系统的振动和不稳定控制具有重要意义。利用智能磁致伸缩层作为执行器,研究了磁致伸缩夹层悬臂流体输送微管的振动和不稳定性响应。 Euler-Bernoulli光束模型与修改的耦合应力理论(MCST)一起用于模拟问题。作为这些智能层的主要特性,在建模中考虑了磁性强度效果,速度反馈增益和热效应。利用汉密尔顿原则提取管理方程式。应用扩展的Galerkin程序以使控制方程分开,并获得直接求解的特征值问题,以进入特征值。然后,研究了特征值图以分析在系统的前三种模式中发生的振动特性和可能的​​不稳定性(颤动和分叉)。在整个分析中,详细研究了磁致伸缩层对临界流速和频率的各种固有特性的作用。数值结果表明,使用的智能层的良好能力控制流体输送微管的不稳定性。因此,这些夹层结构可以有助于实现这种系统的新颖设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号