...
首页> 外文期刊>International journal of numerical methods for heat & fluid flow >Large eddy simulation of an axial pump with coupled flow rate calculation using the sharp interface immersed boundary method
【24h】

Large eddy simulation of an axial pump with coupled flow rate calculation using the sharp interface immersed boundary method

机译:轴流泵的大涡模拟,并采用尖锐的界面浸入边界法进行耦合流量计算

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose Turbomachinery, including pumps, are mainly designed to extract/produce energy from/to the flow. A major challenge in the numerical simulation of turbomachinery is the inlet flow rate, which is routinely treated as a known boundary condition for simulation purposes but is properly a dependent output of the solution. As a consequence, the results from numerical simulations may be erroneous due to the incorrect specification of the discharge flow rate. Moreover, the transient behavior of the pumps in their initial states of startup and final states of shutoff phases has not been studied numerically. This paper aims to develop a coupled procedure for calculating the transient inlet flow rate as a part of the solution via application of the control volume method for linear momentum. Large eddy simulation of a four-blade axial hydraulic pump is carried out to calculate the forces at every time step. The sharp interface immersed boundary method is used to resolve the flow around the complex geometry of the propeller, stator and the pipe casing. The effect of the spurious pressure fluctuations, inherent in the sharp interface immersed boundary method, is damped by local time-averaging of the forces. The developed code is validated by comparing the steady-state volumetric flow rate with the experimental data provided by the pump manufacturer. The instantaneous and time-averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field. Design/methodology/approach The authors use control volume analysis for linear momentum to simulate the discharge rate as part of the solution in a large eddy simulation of an axial hydraulic pump. The linear momentum balance equation is used to update the inlet flow rate. The sharp interface immersed boundary method with dynamic Smagorinsky sub-grid stress model and a proper wall model is used. Findings The steady-state volumetric flow rate has been computed and validated by comparing to the flow rate specified by the manufacturer at the simulation conditions, which shows a promising result. The instantaneous and time averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field. Originality/value An approach is proposed for computing the volumetric flow rate as a coupled part of the flow solution, enabling the simulation of turbomachinery at all phases, including the startup/shutdown phase. To the best of the authors' knowledge, this is the first large eddy simulation of a hydraulic pump to calculate the transient inlet flow rate as a part of the solution rather than specifying it as a fixed boundary condition. The method serves as a numerical framework for simulating problems incorporating complex shapes with moving/stationary parts at all regimes including the transient start-up and shut-down phases.
机译:用途包括泵在内的涡轮机械主要设计用于从流动中/向流动中提取/产生能量。涡轮机械数值模拟中的主要挑战是进气流速,出于模拟目的,进气流速通常被视为已知的边界条件,但适当地取决于解决方案的输出。结果,由于不正确地规定了排出流量,因此数值模拟的结果可能是错误的。此外,尚未对泵在其启动的初始状态和截止阶段的最终状态的瞬态行为进行数值研究。本文旨在通过应用线性动量的控制量方法,开发一种用于计算瞬态入口流量的耦合程序,作为解决方案的一部分。对四叶片轴向液压泵进行了大涡模拟,以计算每个时间步的力。尖锐的界面浸入边界方法用于解决围绕螺旋桨,定子和管壳的复杂几何形状的流动。尖锐的界面浸入边界方法固有的杂散压力波动的影响被力的局部时间平均所衰减。通过将稳态体积流量与泵制造商提供的实验数据进行比较,可以验证所开发的代码。还研究了瞬时流和时间平均流场,以揭示泵流场中的流型和湍流特性。设计/方法/方法作者使用控制量分析的线性动量来模拟排出速度,这是轴向液压泵大涡流模拟中解决方案的一部分。线性动量平衡方程用于更新入口流量。使用具有动态Smagorinsky子网格应力模型和适当墙模型的尖锐界面浸入边界方法。研究结果通过与制造商在模拟条件下指定的流量进行比较,计算并验证了稳态体积流量,这显示了令人鼓舞的结果。还研究了瞬时和时间平均流场,以揭示泵流场中的流型和湍流特性。独创性/价值提出了一种将体积流量作为流量解决方案的耦合部分进行计算的方法,从而能够在所有阶段(包括启动/关闭阶段)对涡轮机械进行仿真。据作者所知,这是液压泵的第一个大型涡流模拟,用于计算瞬态入口流量作为解决方案的一部分,而不是将其指定为固定边界条件。该方法可作为数值框架,用于模拟在包括瞬态启动和关闭阶段在内的所有状态下将复杂形状与运动/静止部分结合在一起的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号