...
首页> 外文期刊>International journal of numerical methods for heat & fluid flow >Stator-rotor interaction in the tip leakage flow of an inlet vaned low-speed axial fan
【24h】

Stator-rotor interaction in the tip leakage flow of an inlet vaned low-speed axial fan

机译:入口损失的尖端泄漏流动的定子转子相互作用叶片叶片低速轴流风扇

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - The purpose of the paper is to quantify the impact of the non-uniform flow generated by the upstream stator on the generation and convection of the tip leakage flow (TLF) structures in the passages of the rotor blades in a low-speed axial fan. Design/methodology/approach - A full three dimensional (3D)-viscous unsteady Reynolds-averaged Navier-stokes (RANS) (URANS) simulation of the flow within a periodic domain of the axial stage has been performed at three different flow rate coefficients (Φ = 0.38, 0.32, 0.27) using ReNormalization Group k-ε turbulence modelling. A typical tip clearance of 2.3 per cent of the blade span has been modelled on a reduced domain comprising a three-vaned stator and a two-bladed rotor with circumferential periodicity. A non-conformal grid with hybrid meshing, locally refined O-meshes on both blades and vanes walls with (100 × 25 × 80) elements, a 15-node meshed tip gap and circumferential interfaces for sliding mesh computations were also implemented. The unsteady motion of the rotor has been covered with 60 time steps per blade event. The simulations were validated with experimental measurements of the static pressure in the shroud of the blade tip region. Findings - It has been observed that both TLF and intensities of the tip leakage vortex (TLV) are significantly influenced by upstream stator wakes, especially at nominal and partial load conditions. In particular, the leakage flow, which represents 12.4 per cent and 11.3 per cent of the working flow rate, respectively, has shown a clear periodic fluctuation clocked with the vane passing period in the relative domain. The periodic fluctuation of the TLF is in the range of 2.8-3.4 per cent of the mean value. In addition, the trajectory of the tip vortex is also notably perturbed, with root-mean squared fluctuations reaching up to 18 per cent and 6 per cent in the regions of maximum interaction at 50 per cent and 25 per cent of the blade chord for nominal and partial load conditions, respectively. On the contrary, the massive flow separation observed in the tip region of the blades for near-stall conditions prevents the formation of TLV structures and neglects any further interaction with the upstream vanes. Research limitations/implications - Despite the increasing use of large eddy simulation modelling in turbomachinery environments, which requires extremely high computational costs, URANS modelling is still revealed as a useful technique to describe highly complex viscous mechanisms in 3D swirl flows, such as unsteady tip flow structures, with reasonable accuracy. Originality/value - The paper presents a validated numerical model that simulates the unsteady response of the TLF to upstream perturbations in an axial fan stage. It also provides levels of instabilities in the TLV derived from the deterministic non-uniformities associated to the vane wakes.
机译:目的 - 纸张的目的是量化上游定子产生的非均匀流的影响在转子叶片在低速轴向中的转子叶片的通道中产生和对流的产生和对流扇子。设计/方法/方法 - 完整的三维(3D) - 在三个不同的流速系数(1)的周期性域内的流动内的流量的vier-stokes(rans)模拟的全部三维(3d)vier-stokes(rans)模拟φ= 0.38,0.32,0.27)使用重新运算组K-ε湍流建模。刀片跨度的2.3%的典型尖端间隙已经在缩小域上建模,其包括三个叶片定子和具有周向周期性的双叶片转子。还实现了具有混合啮合的非共形网格,在两个叶片上的局部精制O形孔和具有(100×25×80)元件的叶片壁,也实现了用于滑动网格计算的15节点网状尖端间隙和用于滑动网格计算的周向接口。转子的不稳定运动已被每个刀片事件的60个时间介绍。用叶片尖端区域的护罩中的静压进行验证仿真。结果 - 已经观察到尖端泄漏涡流(TLV)的TLF和强度受到上游定子唤醒的显着影响,尤其是在标称和部分负载条件下。特别地,泄漏流量分别表示12.4%和11.3%的工作流速,已经示出了在相对结构域中的叶片通过的透明周期性波动。 TLF的周期性波动在平均值的2.8-3.4%的范围内。此外,尖端涡旋的轨迹也显着扰动,具有达到最高可达18%的根性平均波动,在最大互动区域中达到高达18%,而标称的刀片弦的25%的互动区域和部分负载条件。相反,在叶片的尖端区域中观察到的用于近代条件的大规模流动分离防止了TLV结构的形成,并忽略了与上游叶片的任何进一步的相互作用。研究限制/含义 - 尽管在涡轮机械环境中使用大型涡流模拟建模的越来越多,但需要极高的计算成本,uran建模仍然被揭示为在3D旋流中描述高度复杂的粘性机制的有用技术,例如不稳定的尖端流动结构,精度合理。原创性/值 - 本文介绍了一个经过验证的数值模型,用于模拟TLF在轴向扇形级中的上游扰动的不稳定响应。它还提供从与叶片唤醒相关的确定性非均匀性导出的TLV中的稳定性水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号