...
首页> 外文期刊>International journal of numerical methods for heat & fluid flow >Unsteady stagnation-point flow and heat transfer of fractional Maxwell fluid towards a time dependent stretching plate with generalized Fourier's law
【24h】

Unsteady stagnation-point flow and heat transfer of fractional Maxwell fluid towards a time dependent stretching plate with generalized Fourier's law

机译:不稳定的停滞点流量和分数麦克风流体的传热朝向具有广义傅里叶法的时间依赖拉伸板

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - The purpose of this study is to investigate the unsteady stagnation-point flow and heat transfer of fractional Maxwell fluid towards a time power-law-dependent stretching plate. Based on the characteristics of pressure in the boundary layer, the momentum equation with the fractional Maxwell model is firstly formulated to analyze unsteady stagnation-point flow. Furthermore, generalized Fourier's law is considered in the energy equation and boundary condition of convective heat transfer. Design/methodology/approach - The nonlinear fractional differential equations are solved by the newly developed finite difference scheme combined with L1-algorithm, whose convergence is verified by constructing a numerical example. Findings - Some interesting results can be revealed. The larger fractional derivative parameter of velocity promotes the flow, while the smaller fractional derivative parameter of temperature accelerates the heat transfer. The temperature boundary layer is thicker than the velocity boundary layer, and the velocity enlarges as the stagnation parameter raises. This is because when Prandtl number < 1, the capacity of heat diffusion is greater than that of momentum diffusion. It is to be observed that all the temperature profiles first enhance a little and then reduce rapidly, which indicates the thermal retardation of Maxwell fluid. Originality/value - The unsteady stagnation-point flow model of Maxwell fluid is extended from integral derivative to fractional derivative, which has more flexibility to describe viscoelastic fluid's complex dynamic process and provide a theoretical basis for industrial processing.
机译:目的 - 本研究的目的是研究分数麦克斯韦流体的不稳定停滞点流和传热朝向时间幂依赖性拉伸板。基于边界层中的压力的​​特性,首先配制与分数麦克斯韦模型的动量方程,分析不稳定的停滞点流。此外,在对流传热的能量方程和边界条件下考虑了广义的傅里叶的定律。设计/方法/方法 - 通过新开发的有限差分方案与L1算法组合的新开发的有限差分方程来解决,其通过构造数值示例来验证其收敛。调查结果 - 可以揭示一些有趣的结果。速度较大的速度衍生物参数促进流动,而温度的较小分数衍生物参数加速热传递。温度边界层比速度边界层厚,并且随着停滞参数升高而增大速度增大。这是因为当Prandtl号<1时,热扩散的容量大于动量扩散的容量。应观察到,所有温度轮廓首先增强一点,然后迅速减少,这表明麦克风流体的热延迟。最新/值 - 麦克斯韦流体的不稳定停滞点流量模型从整体衍生物延伸到分数衍生物,这具有更大的灵活性来描述粘弹性流体的复杂动态过程,并为工业加工提供理论依据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号