首页> 外文期刊>International journal of numerical methods for heat & fluid flow >Mathematical modeling of the production of magnetic nanoparticles through counter-flow non-premixed combustion for biomedical applications
【24h】

Mathematical modeling of the production of magnetic nanoparticles through counter-flow non-premixed combustion for biomedical applications

机译:通过对生物医学应用的逆流非预混燃烧生产磁性纳米粒子的数学建模

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - The widespread usage of magnetic nanoparticles (MNPs) requires their efficient synthesis during combustion process. This study aims to present a mathematical model for the oxidation of MNPs in a counter-flow non-premixed combustion system to produce MNPs, where the key sub-processes during the oxidation reaction are involved. Design/methodology/approach - To accurately describe structure of flame and determine distributions of temperature and mass fractions of both reactants and products, equations of energy and mass conservations were solved based on the prevailing assumptions that three regions, i.e. preheating, reaction and oxidizer zones exist. Findings - The numerical simulation was first validated against experimental data and characteristics of the combustion process are discussed. Eventually, the influences of crucial parameters such as reactant Lewis numbers, strain rate ratio, particle size, inert gas and thermophoretic force on structure of flame and combustion behavior were examined. The results show that maximum flame temperature can achieve 2,205 K. Replacing nitrogen with argon and helium as carrier gases can increase flame temperature by about 27% and 34%, respectively. Additionally, maximum absolute thermophoretic force was found at approximately 9.6 × 10-8 N. Originality/value - To the best of authors' knowledge, this is the first time to numerically model the preparation of MNPs in a counter-flow non-premixed combustion configuration, which can guide large-scale experimental work in a more effective way.
机译:目的 - 磁性纳米颗粒(MNP)的广泛使用需要其在燃烧过程中的有效合成。该研究旨在介绍用于在反流非预混燃烧系统中氧化MnP的数学模型,以产生MNP,其中涉及氧化反应期间的关键子过程。设计/方法/方法 - 准确地描述火焰结构并确定反应物和产品的温度和质量分布,基于三个区域的主要假设,即预热,反应和氧化剂区的普遍假设来解决能量和质量守恒的方程存在。调查结果 - 讨论了对实验数据验证的数值模拟,并讨论了燃烧过程的特性。最终,研究了诸如反应物路易斯数,应变率比,粒度,惰性气体和热液体性能对火焰和燃烧行为结构的关键参数的影响。结果表明,最大火焰温度可以达到2,205k.用氩气和氦气替换氮,因为载气可以分别将火焰温度提高约27%和34%。此外,最大绝对热嗜热力被发现为大约9.6×10-8 N.原创性/值 - 符合作者的知识,这是第一次在数字上模拟MNP的制备,在反流非预混燃烧中配置,可以以更有效的方式引导大规模的实验工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号