首页> 外文期刊>International journal of RF and microwave computer-aided engineering >Pareto Optimal Synthesis of the Linear Array Geometry for Minimum Sidelobe Level and Null Control During Beam Scanning
【24h】

Pareto Optimal Synthesis of the Linear Array Geometry for Minimum Sidelobe Level and Null Control During Beam Scanning

机译:光束扫描期间最小旁瓣电平和空控制的线性阵列几何的帕累托最优综合

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, synthesis of the linear array geometry is put forward as a constrained vector optimization problem whose components are to meet the minimum sidelobe level (SLL) and control of the widearrow null placement during beam scanning whose range can vary from zero to the wide bands. As these synthesis objectives generally conflict with each other, nondominated solutions are acquired using the Nondominated Sorting Genetic Algorithm- II (NSGA-II) as a fast nondominated genetic sorting algorithm. Then, the Pareto frontiers are obtained using these trade-off solution sets between the maximum SLL, null control, and scanning range to provide a view of all design options. Thus, the pattern features resulted from these Pareto frontiers are valid for any chosen main beam direction within its full prescribed beam scanning range. The same Pareto optimal synthesis procedure can be applied to a thinned linear antenna array. A thinned linear antenna array is obtained by a simple genetic optimization by rounding the excitation amplitudes either to 1 or 0 to minimize the maximum of side lobe level (MSLL) during the beam scanning within the prescribed region as stated in the multiobjective function. Finally, some typical Pareto optimal radiation patterns of the scanning arrays are synthesized with only pertur-bating the positions of the array elements, and their full electromagnetic wave simulations are also completed to examine the resulted mutual coupling effects between the elements of the arrays. It can be concluded that the Pareto optimal synthesis procedure gives the scanning linear antenna arrays with successful radiation performance.
机译:在这项工作中,提出了线性阵列几何形状的综合作为约束矢量优化问题,其成分要满足最小旁瓣电平(SLL)以及在光束扫描期间控制宽/窄零位放置,其范围可以从零变化到乐队。由于这些合成目标通常彼此冲突,因此使用非主导排序遗传算法II(NSGA-II)作为快速非主导遗传排序算法来获取非主导解决方案。然后,使用这些折衷解决方案集在最大SLL,空值控制和扫描范围之间获得帕累托边界,以提供所有设计选项的视图。因此,由这些帕累托边界产生的图案特征对于在其整个预定光束扫描范围内的任何选定主光束方向均有效。可以将相同的帕累托最优合成过程应用于减薄的线性天线阵列。通过简单的遗传优化,通过将激励幅度取整为1或0以最小化在多目标函数中所述的规定区域内进行波束扫描期间的旁瓣电平(MSLL)的最大值,可以通过简单的遗传优化获得变薄的线性天线阵列。最后,仅扰动阵列元件的位置,合成了一些典型的扫描阵列的帕累托最优辐射图,并且还完成了它们的完整电磁波仿真,以检查阵列元件之间的互耦合效应。可以得出结论,帕累托最优合成程序使扫描线性天线阵列具有成功的辐射性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号