首页> 外文期刊>Iron & Steelmaker >Experimental Operation of Smelting Reduction With a 100 mt Smelter-I. Operation and the Slag in the Smelter
【24h】

Experimental Operation of Smelting Reduction With a 100 mt Smelter-I. Operation and the Slag in the Smelter

机译:使用100吨Smelter-I进行还原冶炼的实验操作。冶炼厂的操作和炉渣

获取原文
获取原文并翻译 | 示例
           

摘要

Intensive research on a bath smelter was successfully conducted from 1988 to 1991 using a 100-metric-ton smelter. The experiment demonstrated that the bath smelting reduction was operable with a commercial size smelter and is one of the prominent processes for future ironmaking. The highest production rate achieved was 36.4 metric tons of iron/hour using a high volatile matter coal and a hematite ore. This rate was equivalent to a 7 metric ton per day per cubic meter volumetric productivity. The slag was found to be very important for bath smelting reduction. Figure 16 shows the facts about the slag revealed by the experiment. The slag surface is disturbed and moves frequently. The impact of the oxygen jet forms a cavity. The slag contains gas, iron droplets and char from coal. The lower one-third of the slag is a condensed iron zone. The upper part of the slag also has iron droplets. The char exists in a uniform manner in the slag. At least half the char in the smelter exists in the slag, and the rest is fluidized in the gas space above the slag. The iron droplets and char in the slag are sources of carbon for iron oxide reduction. As the slag increases, the interfacial areas on the iron droplets and char increase, as does the reduction capacity, defined as (reduction rate)/(T.Fe). The gas in the slag originates from iron oxide reduction, the volatile matter of coal and bottom bubbled nitrogen. The gas makes the slag foamy. The minute foam bubbles generated by iron oxide reduction are converted to larger bubbles on the char in order to prevent the slag from slopping. The total gas generation rate affected the apparent slag density, as did the CO gas generation rate by iron oxide reduction. The char weight ratio in the slag and slag weight also affected the apparent slag density. Other factors affected the conditions of slag foaming, but were not quantitatively recognized.
机译:从1988年到1991年,使用100公吨的熔炉成功地进行了熔池熔炉的深入研究。实验表明,熔池还原可与商业规模的熔炉一起使用,并且是未来炼铁的重要工艺之一。使用高挥发性物质煤和赤铁矿矿石,最高产量达到每小时36.4公吨铁。该速率相当于每天每立方米7吨的生产力。发现炉渣对于减少熔池熔液非常重要。图16显示了实验揭示的关于炉渣的事实。炉渣表面受到干扰并经常移动。氧气射流的冲击形成空腔。炉渣中含有气体,铁滴和煤焦。炉渣的下三分之一是冷凝铁区。炉渣的上部也有铁滴。炭以均匀的方式存在于炉渣中。熔炉中至少有一半的焦炭存在于炉渣中,其余的则在炉渣上方的气体空间中流化。炉渣中的铁滴和炭是还原铁氧化物的碳源。随着炉渣的增加,铁滴和炭上的界面面积也增加,还原能力也定义为(还原率)/(T.Fe)。炉渣中的气体源自氧化铁还原,煤的挥发性物质和底部冒泡的氮气。气体使炉渣呈泡沫状。通过氧化铁还原生成的微小泡沫气泡在焦炭上转化为较大的气泡,以防止炉渣倾斜。总气体产生速率影响表观炉渣密度,通过氧化铁还原产生的CO气体产生速率也如此。炉渣中的焦炭比和炉渣重量也影响表观炉渣密度。其他因素影响炉渣起泡的条件,但没有被定量识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号