首页> 外文期刊>ISIJ international >Modelling and Crystal Plasticity Analysis for the Mechanical Response of Alloys with Non-uniformly Distributed Secondary Particles
【24h】

Modelling and Crystal Plasticity Analysis for the Mechanical Response of Alloys with Non-uniformly Distributed Secondary Particles

机译:非均匀分布二次粒子合金机械响应的建模与晶体塑性分析

获取原文
获取原文并翻译 | 示例
           

摘要

The relationship between yield stress and the distribution of microscopic plastic deformation was numerically investigated by using a crystal plasticity finite element method (CP-FEM) in the model where particles were randomly distributed. It was in order to reveal which particle spacing, i.e., the maximum, minimum or average particle spacing, can be taken as the representative length which controls yielding. The critical resolved shear stress for the onset of the slip deformation in any element was defined under the extended equation in the Bailey-Hirsch type model. The model includes the term of the Orowan stress obtained from the local values of the representative length. Each particle spacing was distributed with a standard deviation of approximately 2 to 3 times larger than the average particle spacing. The macroscopic mechanical properties obtained with CP-FEM were in good agreement with those experimentally obtained. The onset of microscopic slip deformation depended on the particle distribution. Plastic deformations started first in the area where the particle size is larger, then the plastic region grows in the areas where the particle spacing is smaller. Slip deformation had occurred in 90% of the matrix phase by the macroscopic yield point. The length factor in the Orowan equation was the average spacing of the particles in the model, which is in good agreement with Foreman and Makin. The CP-FEM indicated that in dispersed hardened alloys, microscopic load transfer occurred between the areas where the large particles spacing and the small one at the yielding.
机译:通过在颗粒被随机分布的模型中使用晶体可塑性有限元方法(CP-FEM)来计算屈服应力与微观塑性变形分布的关系。为了透露哪个颗粒间隔,即最大,最小或平均粒子间距,可以作为控制屈服的代表性长度。在Bailey-Hirsch型模型中的扩展方程中定义了任何元件中滑动变形的临界分辨剪切应力。该模型包括从代表长度的局部值获得的orowan应力的术语。每个颗粒间距分布,标准差大约比平均粒子间距大约2至3倍。用CP-FEM获得的宏观机械性能与实验获得的宏观致命吻合良好。微观滑动变形的开始依赖于颗粒分布。塑料变形首先在粒径较大的区域中首先开始,然后塑料区域生长在颗粒间隔较小的区域中。通过宏观屈服点在90%的基质相中发生了滑移变形。 orowan方程中的长度因数是模型中粒子的平均间距,与工头和Makin吻合良好。 CP-FEM表明,在分散的硬化合金中,在大颗粒间距和屈服中的小的区域之间发生微观载荷转移。

著录项

  • 来源
    《ISIJ international》 |2020年第8期|1819-1828|共10页
  • 作者单位

    Department of Materials Science and Engineering Kyushu University. Now at National Institute of Technology Kisarazu College 2-11-1 Kiyomidai-Higashi Kisarazu Chiba 292-0041 Japan;

    Department of Materials Science and Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan;

    Department of Engineering Kitami Institute of Technology 165 Koencho Kitami Hokkaido 090-8507 Japan;

    Department of Materials Science and Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    crystal plasticity finite element analysis; dispersion hardening; mechanical response;

    机译:晶体塑性有限元分析;分散硬化;机械响应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号