首页> 外文期刊>ISIJ international >Modeling and Optimisation of Gas Stirred Ladle Systems
【24h】

Modeling and Optimisation of Gas Stirred Ladle Systems

机译:气体搅拌钢包系统的建模与优化

获取原文
获取原文并翻译 | 示例
           

摘要

Experiments were carried out to measure mixing time and slag eye area in two different water model ladles with gas injection nozzle located at the mid bath radius position. Within the range of experimental conditions studied, the following correlations (in SI unit), for 95% mixing time and slag eye area, were found to work satisfactorily: In the above equations, Q is the gas flow rate (corrected to mean height and temperature of the liquid) (m~3/s), L is the liquid depth (m), R is the vessel radius (m), AL is the slag layer thickness (m), v_s is the kinematic viscosity (m_2/s) of the upper phase, pL is the bulk liquid density (kg/m3), τ_(mix,95%) is the mixing time (s), A_(es) is the slag eye area (m_2), UP is the average plume rise velocity (m/s), g is the gravitational acceleration (m/s2) and Ap is the metal-slag density differential (kg/m3). Based on the above and a set of four different bounds on (ⅰ) specific energy input rate, ( ⅱ) ladle aspect ratio, (ⅲ) amount of liquid in ladle and (ⅳ) slag layer thickness, a multi-objective, constrained optimization problem was formulated to investigate inert gas injection in steelmaking ladles. To this end, a Genetic Algorithm based optimisation procedure embodied in MATLAB™ was applied. Due to the conflicting nature of the objective functions, a Pareto optimal front, comprising many optimal solutions resulted from which the desirable range of operating parameters was identified. Present study has also indicated that desirable optimal operating conditions are likely to be a function of the location of the porous plug in a ladle. Finally, for the sake of validation, three arbitrarily chosen experimental conditions were evaluated against the relevant Pareto front and it is shown that the chosen conditions are, by and large, sub-optimal.
机译:进行了实验,以测量两个不同水模型钢包中的混合时间和渣眼面积,其中气体喷嘴位于中浴半径位置。在所研究的实验条件范围内,对于95%的混合时间和渣眼面积,以下相关关系(以SI单位表示)令人满意地起作用:在上述等式中,Q为气体流速(校正为平均高度和液体温度)(m〜3 / s),L是液体深度(m),R是容器半径(m),AL是渣层厚度(m),v_s是运动粘度(m_2 / s )的上层相,pL是堆积液体密度(kg / m3),τ_(mix,95%)是混合时间(s),A_(es)是渣眼面积(m_2),UP是平均值羽流上升速度(m / s),g为重力加速度(m / s2),Ap为金属渣密度差(kg / m3)。基于以上以及(a)比能量输入速率,(ⅱ)钢包长径比,(ⅲ)钢包中液体量和(ⅳ)炉渣层厚度的四个不同范围的集合,进行了多目标约束优化为了研究炼钢钢包中的惰性气体注入问题,提出了一个问题。为此,应用了基于MATLAB™的基于遗传算法的优化程序。由于目标函数的冲突性质,产生了包含许多最优解的帕累托最优阵线,由此确定了所需的运行参数范围。目前的研究还表明,理想的最佳操作条件可能是钢包中多孔塞位置的函数。最后,为验证起见,针对相关的帕累托前沿评估了三个任意选择的实验条件,结果表明,选择的条件总体上是次优的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号