...
首页> 外文期刊>Japanese journal of applied physics >Fabrication of Graphene-Based Electrochemical Capacitors
【24h】

Fabrication of Graphene-Based Electrochemical Capacitors

机译:石墨烯基电化学电容器的制造

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we investigate the electrochemical properties of graphene-based capacitors using cyclic voltammetry (CV), constant charge/ discharge cycling, and electrochemical impedance spectroscopy combined with an equivalent circuit. An easy route incorporated with modified Hummers' method and microwave-assisted reduction is capable of preparing graphene nanosheets (GNs). Two types of capacitors fabricated with GN and graphene oxide (GO) powders are examined in 1 M H_2SO_4 within a potential of 0 and 0.8 V vs Ag/AgCI. The GO-based capacitor not only presents a better stable capacitance (ca. 211.7F/g after 1000 cycles), but also a lower equivalent series resistance (ca. 7.6 Ω. After 1000 cycles), when compared with the GN-based capacitor. The presence of surface oxides, attached to the edges or defects of the basal planes, imparts hydrophilic coverage for the formation of a double layer (double-layer capacitance) and active sites for reversible redox reaction (pseudocapacitance). When incorporated with structural (nanosheets) and chemical (surface oxides) factors, the GO powder serves as a promising electrode material for electrochemical capacitors or other energy-storage devices.
机译:在这项研究中,我们使用循环伏安法(CV),恒定充电/放电循环和电化学阻抗谱以及等效电路研究了石墨烯基电容器的电化学性能。结合改进的Hummers方法和微波辅助还原的简便方法能够制备石墨烯纳米片(GNs)。在1 M H_2SO_4中,相对于Ag / AgCI,在0和0.8 V的电势下检查了两种由GN和氧化石墨烯(GO)粉末制成的电容器。与基于GN的电容器相比,基于GO的电容器不仅表现出更好的稳定电容(在1000次循环后约为211.7F / g),而且具有更低的等效串联电阻(在1000次循环后约为7.6Ω)。 。附着在基面边缘或缺陷上的表面氧化物的存在为双层(双层电容)的形成提供了亲水性覆盖,并为可逆的氧化还原反应(伪电容)提供了活性位。当与结构(纳米片)和化学(表面氧化物)因素结合使用时,GO粉末可用作电化学电容器或其他储能设备的有前途的电极材料。

著录项

  • 来源
    《Japanese journal of applied physics》 |2012年第1issue2期|p.01AH06.1-01AH06.7|共7页
  • 作者单位

    Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan;

    Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan;

    Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号