...
首页> 外文期刊>Japanese Journal of Applied Physics. Part 1, Regular Papers & Short Notes >Transition Energies of Vertically Coupled Multilayer Nanoscale InAs/GaAs Semiconductor Quantum Dots of Different Shapes
【24h】

Transition Energies of Vertically Coupled Multilayer Nanoscale InAs/GaAs Semiconductor Quantum Dots of Different Shapes

机译:不同形状的垂直耦合多层纳米InAs / GaAs半导体量子点的跃迁能

获取原文
获取原文并翻译 | 示例
           

摘要

The energy spectra of vertically coupled multilayer nanoscale semiconductor quantum dots (QDs) are theoretically studied using a unified three-dimensional (3D) model. The model formulation includes (1) the position-dependent effective mass Hamiltonian in a nonparabolic approximation for electrons, (2) the position-dependent effective mass Hamiltonian in a parabolic approximation for holes, (3) the finite hard wall confinement potential, and (4) Ben Daniel-Duke boundary conditions. To solve a nonlinear problem, a nonlinear iterative method is further improved in our developed 3D QD simulator. At an applied magnetic field (B), we explore the transition energy and the energy band gap of disk (DI)-, ellipsoid (EL)- and cone (CO)-shaped vertically coupled multilayer nanoscale semiconductor quantum dots. We find that the electron transition energy of vertically coupled multilayer InAs/GaAs QDs depends on their shape and is strongly dominated by the number of stacked layers (N). The interdistance (d) among InAs QDs plays a crucial role in the tunable states of these QDs. In DI-shaped vertically coupled 10-layer QDs at B = 0T and d = 1.0 nm, we find approximately 40% variation in electron ground state energy, which is larger than that (~20% variation) in CO-shaped QDs. In QDs at a nonzero magnetic field, the electron transition energy decreases with increasing N. In QDs with d = 1 nm, the rate of decrease is low when N > 6. This results in QDs with energy band gaps having similar dependences on N. This study implies different applications in magnetooptical phenomena and quantum optical structures.
机译:使用统一的三维(3D)模型从理论上研究了垂直耦合的多层纳米级半导体量子点(QD)的能谱。模型公式包括(1)电子的非抛物线近似中的位置相关有效质量哈密顿量,(2)空穴的抛物线近似中的位置相关有效质量哈密顿量,(3)有限硬壁约束势,以及( 4)Ben Daniel-Duke边界条件。为了解决非线性问题,我们开发的3D QD模拟器进一步改进了非线性迭代方法。在施加的磁场(B)下,我们研究了盘形(DI),椭圆形(EL)和锥形(CO)形垂直耦合的多层纳米级半导体量子点的跃迁能和能带隙。我们发现,垂直耦合的多层InAs / GaAs QD的电子跃迁能量取决于其形状,并且主要由堆叠层数(N)决定。 InAs量子点之间的距离(d)在这些量子点的可调谐状态中起着至关重要的作用。在B = 0T和d = 1.0 nm的DI形垂直耦合的10层QD中,我们发现电子基态能量大约有40%的变化,这比CO形QD中的(约20%的变化)大。在非零磁场下的量子点中,电子跃迁能量随N的增加而降低。在d = 1 nm的量子点中,当N> 6时,下降率很低。这导致量子点的能带隙对N的依赖性相似。这项研究暗示了在磁光现象和量子光学结构中的不同应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号