首页> 外文期刊>Journal of aerospace engineering >Time-Dependent Deformation and Fracture Behavior of Fiber-Reinforced Ceramic-Matrix Composites under Stress-Rupture Loading at Intermediate Temperature
【24h】

Time-Dependent Deformation and Fracture Behavior of Fiber-Reinforced Ceramic-Matrix Composites under Stress-Rupture Loading at Intermediate Temperature

机译:纤维增强陶瓷 - 基质复合材料在中间温度下载下纤维增强陶瓷基复合材料的时间依赖性变形和断裂行为

获取原文
获取原文并翻译 | 示例
           

摘要

The present study investigated the time-dependent deformation, damage, and fracture tendencies of tiber-reinforced ceramic-matrix composites (CMCs) that were exposed to stress-rupture loading at average environmental temperatures. The composite micro stress field and tensile constitutive relationship of the damaged CMCs were examined to characterize their time-dependent damage mechanisms. The relationships between stress-rupture lifetime, constant peak stress level, time-dependent composite deformation, and evolution of internal damages are established. The effects of composite material properties, composite damage state, and environmental temperature on stress-rupture lifetime, time-dependent composite deformation, and evolution of the internal damages of SiC/SiC are analyzed. SiC/SiC was monitored at various constant peak stress levels to predict their experimental stress-rupture lifetime, time-dependent composite deformation, and internal damage evolution. When the fiber volume increases, the stress-rupture lifetime increases, the time-dependent composite strain and the debonding fraction at the interface decrease, and the oxidation fraction at the interface increases. When the saturation space between the matrix cracking increases, the time-dependent composite deformation and the debonding fraction at the interface decrease, and the time for complete debonding and oxidation at the interface increases. When the constant peak stress level and environmental temperature increase, the stress-rupture lifetime decreases, the time-dependent composite deformation and the debonding fraction at the interface increase, and the oxidation fraction at the interface decreases. (C) 2020 American Society of Civil Engineers.
机译:本研究探讨该物在平均环境温度下暴露于应力 - 断裂装载台伯增强陶瓷基复合材料(CMC)具有的取决于时间的变形,损伤和断裂的倾向。复合微应力场和受损的CMC的拉伸本构关系检查以表征其依赖于时间的破坏机理。应力断裂寿命,恒定的峰值应力水平,依赖于时间的复合变形,以及内部损失的进化之间的关系被建立。复合材料特性,复合损坏状态,和应力破断寿命,依赖于时间的复合变形,和SiC / SiC的内部损失的进化环境温度的影响进行了分析。的SiC / SiC复合材料在各种恒定峰值应力水平监测,以预测它们的实验得到的应力断裂寿命,依赖于时间的复合变形,以及内部损伤演化。当纤维体积增大,应力断裂寿命的增加,依赖于时间的复合应变和在界面处降低的脱粘分数,和氧化组分在界面处增加。当基体开裂的增加之间的时间依赖性的复合变形在界面处降低的松解分数在接口增加完全脱粘和的氧化时的饱和度空间,并且,和。当界面处的恒定峰值应力水平和环境温度的增加,应力断裂寿命的降低,依赖于时间的复合变形和在界面处增加的脱粘分数,和氧化分数减小。 (c)2020年美国土木工程师协会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号