首页> 外文期刊>Journal of aerospace engineering >Real-Time Natural Disasters Detection and Monitoring from Smart Earth Observation Satellite
【24h】

Real-Time Natural Disasters Detection and Monitoring from Smart Earth Observation Satellite

机译:智能地球观测卫星实时自然灾害检测与监测

获取原文
获取原文并翻译 | 示例
           

摘要

Current remote sensing satellites with multispectral sensors capture high-resolution images and produce vast quantities of data. The size and volume of this information has dramatically increased in the last decade as sensor resolution and capabilities have significantly improved, without a similar improvement on the satellite system capacity to accommodate these changes. Remote sensing satellites currently operate on a "store and forward" paradigm, where data is stored on the satellite until the satellite is in view of the ground station. Low Earth orbit satellites may only see a ground station for a 10-15 min window per pass, in which time all the collected information must be telemetered to the ground. This process requires large and expensive onboard storage resources and places tremendous stress on communication channels. Hence, a complete image may not be successfully telemetered in one pass causing a significant delay between capture and analysis and limiting the benefits of these images. Smart satellites are more technologically advanced, require less ground station support and data storage, and are capable of transmitting required information quickly and easily to ground stations. With onboard reconfigurable data processing, these satellites have faster data product turnaround, less communication requirements, and provide more useful information. The high performance computing (HPC-I) payload on board the Australian satellite FedSat, launched in December 2002, is a demonstration device of the feasibility of reconfigurable computing technology in space. This device is small in size, requires low power, and has the processing capacity to handle large data volumes. Using this device in conjunction with a high-resolution imaging sensor, such as the bispectral infrared detection (BIRD) sensor, smart dedicated satellites become a feasible and cost effective solution to remote sensing needs. This paper elaborates on the system level design of a real-time fire observation system in the context of a smart satellite mission for detecting and monitoring natural disasters. The proposed system is built upon flight tested field programmable gate arrays based HPC-I technology, and would be capable of producing useful information about natural disasters directly broadcasted to interested parties within rapid timeframes. The algorithms for onboard real-time detection of direction, intensity, and location of fires are discussed, and reliable algorithms for detecting and verifying these fires using smoke plume detection are presented. Further work is described including fire-front analysis and the tracking of fire movement.
机译:当前的具有多光谱传感器的遥感卫星可以捕获高分辨率图像并产生大量数据。在过去的十年中,随着传感器分辨率和功能的显着提高,此信息的大小和数量已急剧增加,而适应这些变化的卫星系统容量却没有得到类似的提高。遥感卫星目前以“存储和转发”模式运行,在该模式下,数据一直存储在卫星上,直到卫星在地面站的视线范围内为止。低空轨道卫星每次通过只能看到一个地面站10-15分钟的窗口,在这段时间内必须将所有收集的信息遥测到地面。此过程需要大量昂贵的机载存储资源,并给通信通道带来巨大压力。因此,完整的图像可能无法一次成功地遥测,从而导致捕获和分析之间的显着延迟并限制了这些图像的优势。智能卫星技术更先进,需要较少的地面站支持和数据存储,并且能够快速,轻松地将所需信息传输到地面站。通过机载可重新配置的数据处理,这些卫星具有更快的数据产品周转时间,更少的通信要求,并提供了更多有用的信息。 2002年12月发射的澳大利亚卫星FedSat上的高性能计算(HPC-I)有效载荷是太空可重构计算技术可行性的演示设备。该设备体积小,功耗低,并且具有处理大数据量的处理能力。通过将此设备与高分辨率成像传感器(如双光谱红外检测(BIRD)传感器)结合使用,智能专用卫星成为满足遥感需求的可行且经济高效的解决方案。本文详细阐述了在智能卫星任务中用于探测和监视自然灾害的实时火灾观察系统的系统级设计。拟议的系统建立在基于HPC-I技术的经过飞行测试的现场可编程门阵列的基础上,并且能够产生有关自然灾害的有用信息,这些信息可在快速时间内直接广播给有关方面。讨论了船上实时检测火的方向,强度和位置的算法,并提出了使用烟羽检测来检测和验证这些火的可靠算法。描述了进一步的工作,包括火灾前分析和火灾移动跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号